
SACJ 36(2) December 2024
Research Article

Migrating teaching of automata theory to a
digital platform
Steven Jordaan , Nils Timm , Linda Marshall
Department of Computer Science, University of Pretoria, South Africa

ABSTRACT
This research explores the challenges of teaching automata theory in computer science and proposes a digital
solution to enhance learning experiences. Traditionally taught through pen and paper, automata theory often ap-
pears daunting to students due to its abstract nature. This study advocates for a shift towards a more interactive,
digital approach. It presents a detailed analysis of current teaching practices, highlighting the need for digital
innovation. Based on the categorisation of common question types in traditional assessments, the research intro-
duces AutomaTutor, a mobile application designed for this specific educational context. AutomaTutor features
a user-friendly interface with a guided exercise system and an interactive editor for experimentation. It offers
immediate feedback, hints, and varied problem sets, promoting self-guided learning. An experimental evaluation
with postgraduate students demonstrated a preference for AutomaTutor over conventional methods, confirming
the hypothesis that a digital platform can significantly improve the understanding of automata theory. The study
represents a step forward in making theoretical computer science more accessible and engaging, benefiting both
teachers and students. It underscores the potential of integrating technology with traditional teaching principles
in automata theory education.
Keywords Automata theory, computer science education, digital learning
Categories • Social and professional topics ∼ Computer science education
Email
Steven Jordaan – sj.jordaan@tuks.co.za (CORRESPONDING)
Nils Timm – ntimm@cs.up.ac.za
Linda Marshall – lmarshall@cs.up.ac.za

Article history
Received: 2 February 2024
Accepted: 13 August 2024
Online: 11 December 2024

1 INTRODUCTION

Theoretical computer science, encompassing the study of formal languages, automata, and
complexity theory, is foundational for understanding computing principles. However, its ab-
stract nature often poses challenges for students, impacting their engagement and compre-
hension. The shift to digital platforms in education presents an opportunity to revitalise the
teaching of these concepts, particularly in automata theory.
This article investigates the migration of teaching theoretical computer science to a digital

platform, with a focus on automata theory. Traditionally, this subject has been taught using
static and text-heavy methods, which can obscure the dynamic and interactive nature of the
Jordaan, S., Timm, N., andMarshall, L. (2024). Migrating teaching of automata theory to a digital platform. South
African Computer Journal 36(2), 31–67. https://doi.org/10.18489/sacj.v36i2.17844
Copyright the author(s); published under a Creative Commons NonCommercial 4.0 License
SACJ is a publication of SAICSIT. ISSN 1015-7999 (print) ISSN 2313-7835 (online)

https://protect.checkpoint.com/v2/___https://orcid.org/0009-0005-2928-2122___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmQ5NDk6Yzc3ZjM4MzZjZTIzM2QxMTNjMTI5MjlhYTE5ZGE2Njk4MWE0YTFiODc2MmNiNjVhZjM5ZTRjNTRhNjcwMmMxODpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://orcid.org/0000-0002-9656-3240___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjAyNTc6ZDk3NTcyZGIwOWUwMmMwOGRhMGUzNjhlZDc4MzM1ODZlMDkwYmE5NDJkNjZmOTRhMjRhNzBmZDdmYzM2ZmM5YTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://orcid.org/0000-0002-5270-243X___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjA1NmI6ZGNlNjQ2MzMyNDEyNzk0ZmVmY2Q4NjEyYmRmMWNmY2UxMmVhMGVkMWMyZmMxNjdlOWE0ZDcyY2M0MTBmZDA5MTpwOlQ6Tg
mailto:sj.jordaan@tuks.co.za
mailto:ntimm@cs.up.ac.za
mailto:lmarshall@cs.up.ac.za
https://protect.checkpoint.com/v2/___https://www.sacj.org.za___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjJhOGU6OTQxYjUxYzI0ZWFmZGFiNjEyNGJiYTFlOTQ4YzdjNjZlZjIzNGI2ZTRmZTYwNWNjMTY4Nzk3ZTAwMzYxNTBlYjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://www.sacj.org.za___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjJhOGU6OTQxYjUxYzI0ZWFmZGFiNjEyNGJiYTFlOTQ4YzdjNjZlZjIzNGI2ZTRmZTYwNWNjMTY4Nzk3ZTAwMzYxNTBlYjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmMyNmM6OWI2MjUxYjE1ZjM2YTI1MTVhYmM1MTllMjQzMGI2ZTNlYmY1M2NlMDM4MmQzNTVjMzMyZmY3YjI4OWIzYWJiMTpwOlQ6Tg
https://protect.checkpoint.com/v2/___http://creativecommons.org/licenses/by-nc/4.0/___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmY3MjA6MDY1YjRjNDM4N2U4YTlhNzljZTNiMmUyNTA0N2Q1MzQ3OTk0MDhjNmI5YmQxZTZmNzY5ODM0MjBkYWI2MTg0MDpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://www.sacj.org.za___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjJhOGU6OTQxYjUxYzI0ZWFmZGFiNjEyNGJiYTFlOTQ4YzdjNjZlZjIzNGI2ZTRmZTYwNWNjMTY4Nzk3ZTAwMzYxNTBlYjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://www.saicsit.org/___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmM4YTk6ZDJkMWExMTVkM2IxYjkzMTg5NDI2MTkyNjZlMDQ0MTU4NmJhN2VlMTQ0MTcxYTBkYTkzYTQ1ODVkZDQ3YmZjMjpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 32

field. Our work proposes AutomaTutor – a mobile application designed to provide an inter-
active and engaging learning experience. Through this digital approach, we aim to enhance
student understanding and engagement by transforming the way theoretical computer science
is taught. Currently, AutomaTutor is limited to finite automata and regular expressions.

1.1 Objectives and Methods
The primary objective of this research was to develop and evaluate a digital platform that
can effectively teach automata theory, a core component of theoretical computer science. To
achieve this, we first conducted a comprehensive literature review to identify current teach-
ing practices and their limitations. We then developed the AutomaTutor application, which
incorporates interactive exercises, real-time feedback, and a user-friendly interface. The app
was designed to accommodate various learning styles and to provide a more intuitive under-
standing of automata theory.
An experimental study was conducted with students to evaluate the effectiveness of the

AutomaTutor app compared to traditional teaching methods. The study measured various
outcomes, including student performance, engagement, and satisfaction.

1.2 Summary of Findings
The results of the experimental study indicate a significant improvement in student perform-
ance and engagement when using the AutomaTutor app compared to traditional methods.
Students reported a better understanding of automata theory concepts and expressed a prefer-
ence for the interactive and immediate feedback provided by the app. These findings suggest
that a digital approach to teaching theoretical computer science can offer substantial benefits
in terms of learning outcomes and student satisfaction.

1.3 Implications and Conclusions
This research contributes to the field of computer science education by providing evidence of
the potential benefits of digital learning platforms. The AutomaTutor app demonstrates how
interactive and engaging tools can enhance the learning experience in theoretical computer
science. The findings suggest that such digital platforms can be an effective supplement or
alternative to traditional teaching methods.
In conclusion, this research marks a step towards modernising the teaching of theoretical

computer science. By embracing digital technologies, educators can provide students with a
more engaging and effective learning experience. Future work will focus on expanding the
app’s content, exploring its application in other areas of computer science, and further refining
its features based on user feedback.

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmRjM2Q6MGYyODRkNmJjNjg5NTIyNDdiYjRjMTYwNDM4ZjI5Zjc2Y2FhN2EyOTcyYWEzZjk2YjU2ZmNlZWM4Njk0N2UwMjpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 33

2 RELATED WORK

The field of automata simulation tools has evolved significantly since its inception in the early
1960s. Coffin et al.’s (1963) seminal work on simulating a Turing machine on a digital com-
puter marked the beginning of this journey. They emphasised the practicality of such simula-
tions for problem solving, algorithm validation, and education in programming fundamentals.
This early venture laid the groundwork for subsequent developments in automata simulation
tools.
Over the past several decades, a variety of tools have been developed, each contributing

uniquely to the domain. Chakraborty et al.’s (2011) comprehensive review of fifty years of
automata simulation provides a valuable classification of these tools. This review, despite
being over a decade old, remains a relevant starting point for understanding the evolution of
automata tools.

2.1 Classification of Automata Simulation Tools
Automata simulation tools can be broadly classified into three categories: language-based,
table-based, and canvas-based tools.

2.1.1 Language-Based Tools
Language-based tools represent automata as programs of a programming language. Knuth and
Bigelow’s (1967) introduction of a simplified symbolic notation for automata in 1967 was a
pivotal development in this category. This notation, resembling assembler language, made
automata theory more accessible and programmable.
Subsequent works by Harris (2002), Chakraborty (2007), Romero (2021), Middleton et

al. (2020), and others have furthered this approach. Notably, Romero’s (2021) Pyformlang
and Middleton et al.’s (2020) FL-AT have contributed significantly to the field. The MOD-
EST language and toolset, as detailed by Bohnenkamp et al. (2006) and Hartmanns and Her-
manns (2014), have been instrumental in modeling and verifying complex automata structures,
including Markov automata, as elucidated by Butkova et al. (2021). FL-AT encompasses an
entire toolset from contruction to the simulation of automata (Middleton et al., 2020).
These tools enable a robust and precise formal definition of automata. The use of program-

ming languages allows for detailed and accurate representation of automata behaviours and
properties. Furthermore, these tools are well-suited for users who are well-versed in automata
theory, providing a platform for deep exploration and analysis. However, the mathematical
and programming-oriented nature of these tools introduces a high skill floor, making them less
accessible for beginners in the field. The complexity of the language and formalism can be
daunting for those without a strong background in mathematics and programming. Overall,
this classification risks overemphasising formalism at the expense of intuitive understanding.

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjdlYzk6N2VhYTA5YTc4NmU2MmYwNjQ1MmQxM2E5MDA5ZTA0ZmE5YzMxMjE1ODA3ZTAxOTMxZDAxNzg3NTVhYTljYThjMzpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 34

2.1.2 Table-Based Tools
Table-based tools constitute a significant advancement in the field of automata simulation,
characterised by their use of transition tables for the construction of automata. This approach,
exemplified by the works of Hannay (2002), Hamada (2008), and Jovanović et al. (2021),
has been particularly influential in enhancing the learning process. The system developed by
Jovanović et al. (2021), for instance, has substantially facilitated the visual simulation of finite
automata and the conversion of regular expressions into deterministic and nondeterministic
finite automata.
One of the primary benefits of table-based tools is their ability to reduce the barrier to entry

for novices in the field. By abstracting some of the more complex formalisms of automata
theory into a structured transition table, these tools offer a more intuitive and less error-prone
approach to defining automata. This abstraction is especially advantageous in educational
settings, aiding in the foundational understanding of automata theory. The structured format
of transition tables also assists learners in conceptualising automata operations, providing a
clear and organised overview of state transitions and automata behaviour.
Despite these advantages, table-based tools are not without their limitations. While they

simplify the process of defining automata, a fundamental understanding of the underlying
formalisms of automata theory remains necessary. Users of these tools must still grasp the
basic principles of automata to effectively utilise them. Moreover, while table-based tools
represent a step towards a more visual construction process, they do not offer the comprehens-
ive visualisation capabilities of more advanced, canvas-based tools. This limitation can be a
significant drawback for users who prefer or benefit from a fully graphical representation of
automata. Additionally, there is a risk of oversimplification inherent in the tabular format of
these tools. The nuances and complexities of more advanced automata concepts might not be
fully captured or appreciated within the confines of a transition table.

2.1.3 Canvas-Based Tools
The evolution of automata simulation tools witnessed a pivotal shift with the advent of canvas-
based simulators in the 1990s, a movement marked by significant technological innovation.
Early contributions in this domain, such as LoSacco and Rodger’s (1993) FLAP. Robinson et
al.’s (1999), Java-based tool, and Cogliati et al.’s (2005) research on visualisation in comput-
ing theory, set the stage for a more interactive and visually engaging approach to automata
simulation. These tools, enabling users to draw automata as state-transition diagrams, greatly
enhanced the visual and interactive aspects of simulation, making complex automata concepts
more accessible and comprehensible.
Prominent among the canvas-based tools are JFLAP by Rodger and Finley (2006) and jFAST

by White and Way (2006). JFLAP, in particular, stands out for its comprehensive feature
set and versatility, offering support for a wide range of automata types. It has been widely
recognised as the de facto standard for automata simulation tools for many years. However,
its last update in 2018 and the lack of focus on user experience have made it less suitable for

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmFiNjk6MDJmN2FkNzk2NzcyYTNkZWFjM2Y4NTBhYWRmMDI4ZDc3ODlkNDQzZTU0NDVmZDcwYTg5ZmVmYzVkOTNkMjI1YzpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 35

beginners, catering more towards users with an advanced understanding of automata theory.
The paper by Vayadande et al. (2022) introduces a canvas-based editor specifically for

deterministic finite automata (DFA) construction, highlighting the continuous evolution and
specialisation within this category. However, it focuses exclusively on DFA, and the construc-
tion process is a hybrid between canvas- and table-based tools.
A significant advancement in this category is the Automata Tutor v3 (D’Antoni et al., 2020).

This tool represents a substantial improvement over its predecessors, particularly in its ability
to automatically grade and provide feedback on a variety of problems. It supports tasks ran-
ging from creating regular expressions and context-free grammars to pushdown automata and
Turing machines. Moreover, it allows for the generation of new problem instances, making it
a valuable tool for educators and students alike. Despite being more beginner-friendly than
JFLAP, the user interface of Automata Tutor v3 still leaves room for improvement.
The popularity of canvas-based tools persists today, with their interactive and visual ap-

proach proving highly effective in teaching and understanding automata theory. However,
their sophistication and range can sometimes be a double-edged sword. While they offer an
immersive and detailed environment for learning and experimentation, the complexity and
depth of features can be overwhelming for beginners. Furthermore, the focus on visual repres-
entation, though beneficial for conceptual understanding, might sometimes detract from the
formal mathematical understanding of automata theory.

2.2 Recent Advances and Mobile Applications
The landscape of automata simulation tools has recently expanded beyond traditional desktop
applications, embracing the mobile domain with innovative applications designed for hand-
held devices. This shift towards mobile platforms reflects an overarching trend in educational
technology, prioritising accessibility and portability. Key players in this new wave include
FLApp (Pereira & Terra, 2018) and Automata Simulator (Singh et al., 2019). These mobile
applications have introduced a touch-based methodology for constructing and simulating vari-
ous types of automata, such as finite automata, pushdown automata, Turing machines, and
transducers, directly on mobile devices.
FLApp, introduced by Pereira and Terra (2018), targets beginners in the field of formal

languages and automata. It stands out for its simple interface and comprehensive feature set,
making it particularly effective for instructional purposes. FLApp is distinguished as the first
mobile application in this domain that prioritises the learning process, rather than merely
serving as a tool for automata construction and simulation.
Singh et al. (2019) present another mobile application, inspired by the capabilities of JFLAP

but with a more limited feature set. This app has been well-received by students for its useful-
ness, although it is often preferred as a supplementary tool in conjunction with JFLAP, rather
than as a standalone learning solution.

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2Ojk3N2E6OTA3MTg1YjM0ZGFhYTYyOWE2YTkyODIwMzg4OWRkOWU5OTE4MmZjMGY3ZDgyMjc2NTJiMTA5ODFjNjJjYWMyMTpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 36

2.3 Educational Impact
The role of automata simulators in educational settings, particularly at the university level, has
been increasingly recognised for its significant impact. Studies conducted by educators and
researchers such as Rodger et al. (2009), Bezáková et al. (2022), and Stamenković and Jovan-
ović (2021) have collectively highlighted how these tools have revolutionised the teaching
and learning of automata theory.
Rodger et al. (2009) showcased the enhanced engagement in automata theory facilitated

by JFLAP, an interactive formal languages and automata package. Their study underscored the
effectiveness of interactive simulation tools in increasing student interest and understanding
in this traditionally challenging subject area. The interactive nature of these simulators allows
for a more hands-on approach to learning, making abstract concepts in automata theory more
tangible and comprehensible to students.
Bezáková et al. (2022) conducted a study to ascertain the most effective types of feedback

for students learning automata theory. They discovered that feedback in the form of witnesses -
specific examples where a student’s solution fails - significantly improved student performance
and persistence in the course. This finding highlights the importance of tailored feedback
in educational simulators, as it can directly impact student comprehension and retention of
automata concepts.
Along a similar vein, Stamenković and Jovanović (2021) addressed the challenges in teach-

ing compiler theory, a field closely related to automata theory. Their research introduced
educational simulators as a means to enhance student participation and learning. These simu-
lators provide visual representation tools for complex concepts like lexical and syntax analysis,
thereby improving the teaching process and making the subject matter more accessible to stu-
dents.

2.4 Game-Based Learning Approaches
Our work also relates to game-based approaches to learning automata theory, as exemplified
by Silva et al.’s (2010) Automata Defense 2.0 and Vieira and Sarinho’s (2019) AutomataMind.
These approaches incorporate educational elements into game formats, offering an engaging
and interactive way to introduce basic concepts of automata theory.

2.5 Summary
Existing research in automata simulation tools, while extensive and varied, predominantly fo-
cuses on developing technical capabilities and enhancing theoretical understanding. However,
a common limitation across these tools is the emphasis on formalism and complexity, which
can be a barrier for beginners and hinder usability. Furthermore, the integration of these tools
into formal university courses has been somewhat limited, often lacking a focus on the overall
user experience. Our research addresses these gaps by concentrating on the integration of
automata simulation tools into a formal university curriculum. We place a specific emphasis

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmY3OTY6NDdiNDQ2MzkzYjA5OWVjNGZlODE3Mjk1ZGNlZjZjNmFkZWZhOTQyM2JjYmE5NDE5Y2M5ZWM1OTQ2NjdiNTU2ZDpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 37

on usability and user experience, ensuring that the tools are not only technically proficient but
also accessible and engaging for all levels of learners, from beginners to advanced students.
This approach aims to make automata theory more approachable and comprehensible, thereby
enhancing the educational impact of these simulation tools.

3 TEACHING AND ASSESSMENT OF AUTOMATA THEORY

In this section we review the classical approach of teaching and assessment of automata theory,
implemented at several universities in South Africa. For conciseness, we focus on the class of
finite automata which represent regular languages. The discussed concepts can be straightfor-
wardly generalised to further classes such as pushdown automata and Turing machines. We
start with a brief recap of the foundations of finite automata and regular expressions.

3.1 Foundations of Finite Automata and Regular Expressions
Within the field of automata theory a finite automaton is a computational model that can serve
as an recogniser of a regular language. Finite automata are foundational for understanding
the properties and limitations of algorithms and are crucial in both theoretical study and
practical applications in computer systems. A finite automaton can be either deterministic or
non-deterministic. A deterministic finite automaton is defined as follows:
Definition 3.1 (Deterministic Finite Automaton). A deterministic finite automaton (DFA) is a
tuple M = (Q,Σ, δ, q, F) where:
• Q is a finite set of states,
• Σ is a finite set of symbols known as the alphabet,
• δ : Q× Σ→ Q is the transition function,
• q ∈ Q is the start state, and
• F ⊆ Q is the set of accepting states.
A DFA can process finite input strings w = w1 . . . wn where each wi is a symbol from the

alphabet Σ. Processing an input string results in a run of the automaton that either leads to
the acceptance or the rejection of the string, refer to Definition 3.2.
Definition 3.2 (Run, Acceptance, and Rejection). Let M = (Q,Σ, δ, q, F) be a DFA and let
w = w1 . . . wn be a string over Σ. Then the run of M over w is the sequence of states q0 . . . qn
such that
• q0 = q, and
• qi+1 = δ(qi, wi) for all i < n.

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2Ojg1NDY6YzVjOTFjNDJkMjczNTlkODBlMmI2ZjhiMGQzYWQyMTBhYzllZmU5MWI2YjQzNzIzZDA3MWRmNTM3ZDEzYTJlZjpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 38

The DFA M accepts the string w if qn is an accepting state of the automaton. Otherwise, M
rejects w.
The set of all strings accepted by an automaton is known as the language of the automaton,

refer to Definition 3.3.
Definition 3.3 (Language of a DFA). LetM be a DFA over the alphabet Σ. Then the language
L(M) of M is the set of all strings over Σ accepted by M :

L(M) = {w | w is accepted by M}.
As an illustrating example we consider the language L = {w | w ends with 01} over the

alphabet Σ = {0, 1}. This language is recognised by the deterministic finite automaton M =
(Q,Σ, δ, q, F) where:
• Q = {q0, q1, q2},
• Σ = {0, 1},

• δ :
0 1

q0 q1 q0
q1 q1 q2
q2 q1 q0

,

• q = q0, and
• F = {q2}.
The automatonM can be equivalently represented by the state-transition diagram depicted

in Figure 1. In the diagram circles represent states and arrows represent transitions. The
incoming arrow into q0 indicates that q0 is the start state and the double circle around q2
indicates that q2 is an accepting state.

q0 q1 q2

1

0

0

1

0

1

Figure 1: DFA with language L = {w | w ends with 01}.

The second type of a finite automaton is a non-deterministic one – refer to Definition 3.4.

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmEzOTA6Y2U2ZWNiNjIyMTJlYjdhMzRkNzk5MGQ3ODRiZTllMDNlMWMzMmUyMzZkMDkwNjQ4NGQxN2NlNzFjNzFmNWM5YzpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 39

Definition 3.4 (Non-Deterministic Finite Automaton). A non-deterministic finite automaton
(NFA) is a tuple M = (Q,Σ, δ, q, F) where:
• Q is a finite set of states,
• Σ is a finite set known as the alphabet,
• δ : Q× Σϵ → P(Q) is the transition function where Σϵ = Σ ∪ {ϵ},
• q ∈ Q is the start state, and
• F ⊆ Q is the set of accepting states.
In this definition ϵ refers to the empty string. In contrast to a DFA, the transition function of

an NFA maps each pair of a state and a symbol from the alphabet to a set of possible successor
states. This implies that for an input string w multiple corresponding runs of an NFA may exist.
The NFA accepts an input string if at least one of the corresponding runs is accepting. The
language of an NFA M is again the set of all strings w accepted by M .
The language of our running example can be also represented by an NFA which is depicted

in Figure 2.

q0 q1 q2

0, 1

0 1

Figure 2: NFA with language L = {w | w ends with 01}.

As can be seen, the automaton is non-deterministic in the sense that in state q0 the symbol
0 allows the automaton to either transition to q0 again or to q1. Moreover, the automaton
also maps certain pairs of states and symbols to the empty set of successor states, which is for
instance the case for the state q1 and the symbol 0. It implies that q1 does not have a successor
state for the symbol 0. If we consider the example input 001, then we can see that there exist
the two possible runs q0q0q0 and q0q1q2 of the automaton. Since at least the latter run ends in
an accepting state, the string ‘001’ is contained in the language of the NFA.
Every language that can be recognised by a DFA can also be recognised by a NFA and vice

versa. It should be noted that NFAs typically allow to represent languages with fewer states
and transitions than DFAs. The class of languages that can be described by DFAs and NFAs are
the regular languages. An alternative way to define regular languages is via regular expressions.
Mathematically, a regular expression comprises symbols from an alphabet and regular op-

erators, where the alphabet is a finite set of symbols. The language of a regular expression is
the set of strings it generates, refer to Definition 3.5.

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2Ojc2Mzg6NzIzOWFjNzg3YmUzNzEyYzRlM2UxZDBmNTY2MmZmMzdiODY4MDJmOGZjN2RjMjNiYmJkNzJmMGY0NWJiM2ZlMDpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 40

Definition 3.5 (Regular Expression). Let Σ be an alphabet. The set of regular expressions
R(Σ) over Σ can be defined recursively as follows:
• The empty string ϵ is a regular expression over Σ, denoted by ϵ ∈ R(Σ).
• The empty set ∅ is a regular expression over Σ, denoted by ∅ ∈ R(Σ).
• If a ∈ Σ, then a ∈ R(Σ).
• If r ∈ R(Σ), then r∗ ∈ R(Σ).
• If r1, r2 ∈ R(Σ), then r1 ∪ r2 ∈ R(Σ).
• If r1, r2 ∈ R(Σ), then r1 · r2 ∈ R(Σ).
The Kleene star closure of a regular expression r, denoted by r∗, generates the set of all

possible strings that can be formed by repeating r zero or more times. The union of languages
generated by two regular expressions r1 and r2, denoted by r1 ∪ r2, is the set of all strings that
can be generated by either r1 or r2. Moreover, the concatenation of languages generated by
two regular expressions r1 and r2, denoted by r1·r2, is the set of all strings that can be generated
by concatenating a string generated by r1 and a string generated by r2. For simplicity we will
typically just write r1r2 for a concatenation r1 · r2.
The language of our running example is defined by the regular expression

(0 ∪ 1)∗01.

That is, the concatenation of an arbitrary string over the alphabet Σ = {0, 1} and the suffix 01.
An integral part of teaching automata theory is to provide students with an understanding

that deterministic finite automata and non-deterministic finite automata as well as regular
expressions are equally powerful concepts. Moreover, students need the skills to convert these
different representations of regular languages into each other. In the following section, we
discuss the types of assessment questions that are commonly used to let students develop their
understanding and skills.

3.2 Assessment Questions on Finite Automata and Regular Expressions
With a foundational understanding of regular languages, finite automata and regular expres-
sions as outlined in Section 3.1, the focus now shifts to effective assessment methodologies
for these concepts. As indicated in Table 1, certain question types can be used in evaluating
students’ comprehension and application skills in this field.
A concrete instance of each of these question types can be provided based on our running

example from Section 3.1:
• Construct a DFA that recognises the language L = {w | w ends with 01} over the alphabet
Σ = {0, 1}.

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjJiZmI6MjY4ZTJmZjE0ZWQzNWMzNjIzYjQ2NTRiOGZjYzFjNjUwMTE3ZTdmM2I5NDEzNzg2YWQzMDg2NzllNGQwNjUwNzpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 41

• Construct a regular expression that defines the language L = {w | w ends with 01} over
the alphabet Σ = {0, 1}.
• Convert the regular expression (0 ∪ 1)∗01 into a DFA with the same language.
• Is the string ‘001’ contained in the language of the regular expression (0 ∪ 1)∗01?

Table 1: Question Types and their Descriptions

Question Type Description

Construct a finite automaton Given a regular language, construct an automaton that
recognises it.

Construct a regular expression Given a regular language, construct a regular expression
that defines it.

Convert between different representations
of regular languages

Convert an NFA to a DFA, convert a regular expression to
a finite automaton, and vice versa.

Determine string matching Determine if a given string is recognised by a given
regular expression or automaton.

The solutions to these questions can be derived from our running example.
Constructing an automaton for a given regular language is a primary question type. This re-

quires students to embody abstract language rules into a tangible automata model, whether it
be a DFA or an NFA. Regular expression constructions expect students to encapsulate the rules
of a language using regular expressions, thereby testing their grasp of how these expressions
delineate patterns within a language. Equally crucial is the ability to convert between differ-
ent types of automata. This skill is assessed by requiring students to transform one automata
form, such as a DFA, into another, like an NFA or a regular expression. This not only demon-
strates their understanding of each automata type but also their proficiency in recognising
the equivalences and differences between them. Lastly, assessing students on their capabil-
ity to determine string matching with regular expressions is vital. This type of question is
aimed at evaluating whether students can effectively apply regular expressions to ascertain
the recognition of strings in a language.
Effective assessment requires the instructor to provide students with questions of different

types and different levels of difficulty, let the students solve the questions, and eventually
provide the students with feedback on their solutions. Questions can be provided in the form
of exercise sheets and homework assignments as well as tests. In the following section we
outline how the assessment process is currently implemented in the course Theoretical Computer
Science at a South African university.

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmJiOWQ6ZjllNWU1YThiMzlmZWEyNjkzZjk4ODI4NzlhNTY0NTcwNzUwYTVhYjAxNTBmOWM4NjgyZWYwNjViYjcyMTg3MjpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 42

3.3 Assessment Process
This section integrates the discussion of the types of questions used in assessments, illustrated
in Table 1, with an analysis of the assessment process in the course Theoretical Computer Science
with about 200 students at a South African university. An integral part of the assessment
process is a weekly homework assignment. Figure 3 graphically illustrates the assignment-
based assessment process.

Instructor Students

Instructor Students

[1-3 days]

[7 days]

[7 days]

Design

Distribute

Solve

Submit

Grade

Feedback

Learn

Pre-assesment Period

Assesment Period

Post-assesment Period

Figure 3: Classical Assessment Process

We will now discuss the major steps of the process in further detail.

3.3.1 Design
This step involves careful consideration of the learning objectives and outcomes that the assess-
ment is intended to measure. The instructor designs an assignment worksheet. This requires
the instructor to handcraft questions of the previously introduced types or to adopt questions
from educational resources such as textbooks. Moreover, the instructor needs to develop a
grading scheme for each question. The simplest form of a grading scheme is to provide marks
for a fully correct solution only. The types of questions on regular languages also allow for a
more differentiated grading scheme: Half of the marks if the student solution accepts all strings

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmUyMjY6MjllNGM0ODViZTdhN2Y3NTY5YzI0NGZkMzNlNTM0NTk3ZWQwMDFhNzY3Y2ZlMmM2YWI3YTgwYzgwMThjMzJiNjpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 43

that are contained in the given language representation, and the other half of the marks if the
student solution rejects all strings that are not contained in the given language representation.
This scheme can be further refined by providing a concrete list of strings that must be accepted
and a list of strings that must be rejected, and awarding a mark for each correctly accepted or
correctly rejected string, respectively.
The completion of the design step may require multiple days, since the instructor needs to

ensure that the questions have an adequate level of difficulty. Moreover, the instructor needs
to verify that the memorandum solutions and the grading schemes are error-free.

3.3.2 Solve
After receiving the assignment sheet, students have one week to solve it and submit their
solutions. Students may work with pen and paper or may use an automata editor such as
JFLAP.
JFLAP allows students to test their solutions by running simulations with different input

strings. But the students will only be informed whether their solutions are correct after the
grading step has been completed.

3.3.3 Grade and Provide Feedback
Teaching assistants grade the student submissions, which typically takes a week for a course
with 200 students. Students receive feedback bymeans of marks and possibly counterexamples
that indicate where the submitted solutions are erroneous. Constructive feedback is crucial
for the students’ learning process, as it helps them understand their mistakes and grasp the
concepts more effectively.
JFLAPmay be used to aid the grading step, which however does not allow to automatise the

grading. Teaching assistants are still required to explicitly test certain input strings. Manual
grading may involve grading errors.

3.3.4 Learn
One week after the submission students receive their marks and feedback.
The delay between the submission and the feedback can lead to a disconnection for stu-

dents, who might lose the context or the line of reasoning that led them to their original
solutions.

3.4 Conclusions of the Assessment Process
We illustrated the assessment process based on a homework assignment on finite automata.
Different types of assessments such as tests, and assessing different topics of automata theory
involve similar steps and efforts. As pointed out, the use of existing automaton simulation tools

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjgxYmU6ZjQ4NGZiMjNkN2ZiZDUyOGUxODk5OWU3ZjI4ZWFhZTY2ZDlkZWZjOGM2ZWQ5OWZjZWVhMjllZWQ2OTI1YzVhMTpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 44

can help students to test their solutions, and it can support graders in the marking step. How-
ever, the process still has several limitations and drawbacks. Students only receive delayed
feedback and the quality of the feedback depends on the grader. Moreover, designing ques-
tions, grading as well as providing feedback is error-prone and requires manual effort, which
increases with the number of students in the course.
In the next section, we present our novel digital framework for teaching and assessment of

automata theory and we discuss how the framework allows to overcome several drawbacks of
the classical assessment process.

4 DIGITAL FRAMEWORK FOR TEACHING AND ASSESSMENT OF AUTOMATA
THEORY

AutomaTutor is a digital platform crafted to improve the teaching and learning of automata the-
ory and to enable a digitally enhanced assessment process. It is designed with dual interfaces,
catering to both students and instructors: the student interface is a mobile application, offering
a dynamic and interactive learning experience, while the instructor interface, currently access-
ible through the source code, allows for the generation of new exercises and assignments. This
educational tool focuses on core areas such as usability, feedback, and generation, featuring
two primary components – a sandbox which is an editor for free-form exploration and creation
of automata as depicted in Figure 4(a), and a digital tutor for structured learning and assess-
ment, seen in Figure 4(b). The tutor allows students to solve instructor-generated exercises
and assignments within the app. AutomaTutor provides a flexible and user-centric learning
environment, accessible via https://automatutor.netlify.app and optimised for mobile phone
use.

4.1 Core Features
At the heart of AutomaTutor lies a fundamental commitment to user engagement, encapsu-
lated through its trio of core features: usability, feedback, and generation. These features are
designed to not only simplify the interaction with the tool but also to sustain and enhance the
learning experience. Usability ensures a smooth and intuitive engagement with the applica-
tion, feedback mechanisms aim to retain and deepen this engagement by providing meaningful
insights, and generation features serve to broaden the scope and extend the longevity of user
engagement.

4.1.1 Usability
Addressing a key gap in existing automata tools, AutomaTutor has been purposefully designed
with a mobile-first approach to offer an intuitive and user-friendly interface. Optimised for
touch-based interactions, it incorporates gestures such as taps and swipes for the seamless con-
struction and modification of automata. Central to its usability is the automatic arrangement

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://automatutor.netlify.app___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjZjOWM6ZWE0ZWZiZjQ2ZTQyYmE0OWNmY2MzMWUxMzVjNmI4MWNjMjMxMzY5ODEyZmFmMTY4MTlkMGIwNTY2YmZlMTY2NDpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjYxNzY6ZmI3YTIwZDM2ZjQyYzBkMDc5MmZlZjQyMmM5Y2U1YTcyYzFjYzE2ZThjOTA1Y2YyNWYyZjJjMzFlNDlhOTdkZTpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 45

(a) Sandbox (b) Tutor Menu

Figure 4: Core Components

of automata components, ensuring a visually organised and clear presentation. The interface
dynamically adjusts the zoom level and diagram positioning, providing an optimal screen
view. This adaptability is crucial, particularly when dealing with larger automata, as it main-
tains readability and ease of interaction, embodying modern mobile application standards in
gesture-based navigation.

4.1.2 Generation
AutomaTutor allows to automatically generate questions on regular languages that can be used
as exercises or assignments, and it allows to generate counterexamples that illustrate where
an incorrect student solution differs from the memorandum solution.

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmY4N2Q6ZGIwY2M5OTgzMmFjMzgwNTg2ZjdhN2I1NDU0YjhiOWFmZjYzZTcwNDQ2OTgzNWMwMjI4MzNlMmQzOTMzOGVkNjpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 46

Regular Expression Generation We present algorithms for generating regular expressions
that centre on substrings, string length, and the synergistic use of these elements through
concatenation and union operations. We begin by considering exercises related to substrings.
Specifically, these exercises involve identifying strings that either begin with, end with, or
contain certain substrings. Here, we propose Algorithm 1 to generate corresponding regular
expressions for these scenarios.

Algorithm 1
Require: Alphabet Σ, length of substring l, mode of operation mode
Ensure: A regular expression RE
1: Initialise an empty regular expression RE
2: Generate a random substring s from Σ with length l
3: Construct a regular expression RΣ using union operations among all symbols in Σ
4: Apply the Kleene star to RΣ to get RΣ∗
5: if mode== ‘begin’ then
6: RE ← sRΣ∗
7: else if mode== ‘end’ then
8: RE ← RΣ∗s
9: else if mode== ‘contain’ then
10: RE ← RΣ∗sRΣ∗
11: end if
12: return RE

In the following we provide a number of examples that show Algorithm 1 in use.
• Example 1: Alphabet set Σ = {0, 1}, length of substring l = 2, mode of operation ‘begin’
The algorithm would randomly generate a substring s of length 2 from Σ, say ‘01’. The
regular expression would then be 01(0 ∪ 1)∗, which matches any string that begins with
‘01’.
• Example 2: Alphabet set Σ = {a, b}, length of substring l = 1, mode of operation ‘end’
The algorithm would randomly generate a substring s of length 1 from Σ, say ‘b’. The
regular expression would then be (a ∪ b)∗b, which matches any string that ends with ‘b’.
• Example 3: Alphabet set Σ = {0, 1, 2}, length of substring l = 3, mode of operation
‘contain’
The algorithm would randomly generate a substring s of length 3 from Σ, say ‘120’. The
regular expression would then be (0 ∪ 1 ∪ 2)∗120(0 ∪ 1 ∪ 2)∗, which matches any string
that contains ‘120’.

Next we consider regular expressions that are focused on string length, specifically, regular
expressions that require identifying strings of exact length, strings that are at least of a certain

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjU2YmM6YzBlYjc3ZTExZDU2NWM4OWJiYTExOWQ2YzRjMDk1OTEwMjExYjY5MTc4YjA0MDVlMzJhOTJhYTQ4ZWM1NWQyMjpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 47

length, or strings whose length is divisible by a particular value. Algorithm 2 below outlines
the method for generating a regular expression based on a given alphabet Σ and the constraints
on string length.

Algorithm 2
Require: Alphabet set Σ, length constraint l, mode of operation mode
Ensure: A regular expression RE
1: Initialise an empty regular expression RE
2: Construct a regular expression RΣ using union operations between all symbols in Σ
3: Apply the Kleene star to RΣ to get RΣ∗
4: if mode== ‘exact’ then
5: RE ← Rl

Σ ▷ where Rl
Σ is an abbreviation for the l-times concatenation of RΣ with

itself
6: else if mode== ‘at least’ then
7: RE ← Rl

ΣRΣ∗
8: else if mode== ‘divisible’ then
9: RE ← (Rl

Σ)
∗

10: end if
11: return RE

Below we illustrate Algorithm 2 with a few examples.
• Example 1: Alphabet set Σ = {0, 1}, length constraint l = 3, mode of operation ‘exact’
The algorithm would generate the regular expression (0∪1)(0∪1)(0∪1), which matches
any string of exact length 3.
• Example 2: Alphabet set Σ = {a, b}, length constraint l = 2, mode of operation ‘at least’
The algorithm would generate the regular expression (a∪b)(a∪b)(a∪b)∗, which matches
any string of length at least 2.
• Example 3: Alphabet set Σ = {0, 1, 2}, length constraint l = 2, mode of operation
‘divisible’
The algorithm would generate the regular expression ((0 ∪ 1 ∪ 2)(0 ∪ 1 ∪ 2))∗, which
matches any string where the length is divisible by 2.

Finally, Algorithm 3 generates complex regular expressions based on an input alphabet Σ and
a specified number k of expressions to generate and combine.

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjE4OWY6MTZhOTNkOGU4MzkwMmNkYzE4YjEzYjYzYjZiNWViMTFlNzY3ZTNhY2ZlYTgxNjlkMDIzMWZmMjZjNWIyZDM5ODpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 48

Algorithm 3
Require: Alphabet set Σ, number of expressions k, range r
Ensure: A regular expression RE
1: Initialise an empty list of regular expressions REs
2: Construct a regular expression RΣ using union operations among all symbols in Σ
3: Apply the Kleene star to RΣ to get RΣ∗
4: for i = 1 to k do
5: Generate a random length l within range r
6: REsi ← ((RΣ)

l) ▷ where REsi indicates the i-th element of the list REs and (RΣ)
l is

the l-times concatenation of RΣ with itself
7: end for
8: Randomly decide between concatenation and union operations as a connector for each
adjacent pair of expressions in REs to form the final expression RE

9: return RE

A few examples of more complex regular expressions are:
• Example 1: Alphabet set Σ = {0, 1}, number of expressions k = 3

Assume that the algorithm generates the random lengths 2, 1, and 3 for the three expres-
sions. It selects to use concatenation to combine the first two and union to combine the
resulting expression with the third one. The generated regular expression would then be
((0∪ 1)(0∪ 1)) · (0∪ 1) for the first part, and ((0∪ 1)(0∪ 1)(0∪ 1)) for the second part. The
final expression becomes ((0∪1)(0∪1)) ·(0∪1)∪((0∪1)(0∪1)(0∪1)), which matches any
string composed of two characters followed by one character, or any string composed of
three characters.
• Example 2: Alphabet set Σ = {a, b}, number of expressions k = 2

Assume that the algorithm generates the random lengths 1 and 3 for the two expressions.
It selects to use union combine them. The generated regular expression would then be
(a∪ b)∪ ((a∪ b)(a∪ b)(a∪ b)), which matches any string composed of either one character
or a string composed of three characters concatenated together.

Exercise Generation The exercise and assignment generation of AutomaTutor has been im-
plemented as follows: Based on specified parameters such as question type and difficulty level,
the tool generates random regular expressions as described in Section 4.1.2. These expressions
are then processed through standard conversion (Maheshwari & Smid, 2019) and minimisa-
tion algorithms (Brzozowski, 1962) to formulate exercise questions, presented in both textual
(such as question text) and visual (such as an automaton) formats for enhanced understanding.
Additionally, the automaton created from the conversion process doubles as a memorandum

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjNmZWY6YWYwZGMxNWEyMWZkNGM1NzM1MWI3MGFlMjg3NzJjNWQyZmFiZTBkZGEyMjJiNmJhOGM0Y2EzN2Q1OGRlNDk2ZTpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 49

solution. This enables the tool to generate specific counterexamples based on the student’s
solution, providing targeted feedback in instances where discrepancies or errors exist. This
approach not only aids in reinforcing correct concepts but also in pinpointing and rectifying
misunderstandings, thereby enriching the learning experience.

Counterexample Generation Counterexamples are key in understanding where a student’s
answer diverges from the memorandum solution. In order to define what counterexamples in
the context of regular languages are, we first need a formal notion of exercises.
An exercise is given as follows: a student is presented with a description of a regular

language, denoted DT , of type T . Here, T could be textual, DFA, NFA, or Regex. The student
is then asked to produce another description D′

T ′ of a different type T ′ ̸= T such that both
descriptions represent the same language, L(DT) = L(D′

T ′). The student’s solution DT ′
S
will

then be validated against a memorandum solution DT ′
M
.

Nowwe can formally define a counterexample in the context of regular languages: Counter-
examples are categorised into two types, each being a set of strings:
• Type I Counterexamples (CexExtra): These include strings w where w ∈ L(DT ′

S
) but

w /∈ L(DT ′
M
). Essentially, these are strings wrongly included in the student’s solution.

These can be intuitively considered as false positives
• Type II Counterexamples (CexMissing): These include strings w where w /∈ L(DT ′

S
) but

w ∈ L(DT ′
M
). These are strings wrongly excluded from the student’s solution. These can

be intuitively considered as false negatives
The counterexamples can be mathematically determined as follows:

CexExtra = L(DT ′
S
) ∩ L(DT ′

M
)

CexMissing = L(DT ′
S
) ∩ L(DT ′

M
)

Here, L(DT ′
M
) and L(DT ′

S
) represent the complements of L(DT ′

M
) and L(DT ′

S
) respectively. This

is also a straightforward algorithm to compute.
By contrasting Figures 5 and 6, the distinction between the student’s solution (DT ′

S
) and

the memorandum solution (DT ′
M
) becomes apparent. For example, the string ‘10’ is accepted

by DT ′
S
but not by DT ′

M
, making it a Type I Counterexample (CexExtra). Similarly, the string

‘110’ is accepted byDT ′
M
but not byDT ′

S
, classifying it as a Type II Counterexample (CexMissing).

These counterexamples are generated and used as targeted hints for students.

s0 s1 s2
0, 1 0

1start

Figure 5: Automaton DT ′
S
representing the student’s solution.

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmVhOWE6MzY1MTVjY2VmMTI4MmQ0NDQzMzE4NWZlYmU4YjBlMmQ0ZGI4MDcyZDZmNDFjNmRkNDUzNTk2MTgyZjNmMWJiODpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 50

m0 m1 m2

0, 1 1
0, 1start

Figure 6: Automaton DT ′
M
representing the memorandum solution.

4.1.3 Feedback
Feedback in AutomaTutor serves as more than just a response, it is a proactive tool that guides
and informs the student’s learning journey. This section details the feedback modalities, each
designed to offer timely and constructive insights.

Hints, designed to scaffold problem-solving skills and alleviate user frustration, play a cru-
cial role within the application. The application presents hints as textual prompts via a pop-up
interface as seen in Figure 7(a). These hints are so far manually curated, and offer users a vari-
ety of suggestions to guide their problem-solving process.

(a) Requested Hint (b) Counterexample (c) Simulation Step

Figure 7: Examples of Feedback

Counterexamples to incorrect student solutions are another form of feedback that Auto-

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjliYmE6ZmE4OTMwYjVkY2IzMjFhZDVkM2ZkN2Y5MWFmYjcyMTdhNTA2MmFkMzhjMTQwOGU4MGU5NzJiNDkzMWIzMDllMDpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 51

maTutor offers. Figure 7(b) shows how a counterexample is presented to the learner by means
of a pop-up. As discussed in the previous section, the application generates counterexamples
automatically.
The Simulation (Figure 7(c)) feature in the application is primarily integrated within the

sandbox. This allows users to construct automata and simulate string inputs against them,
fostering an active learning experience. The automata simulation in the application utilises
colour highlighting to indicate the active state and transitions during the simulation. The
application also incorporates an animation that signifies the reading of the next input symbol.
An accepted or rejected input is highlighted in green or red, respectively, providing clear
feedback to the user.
Upon completing an exercise or an assignment, users are presented with a summary of their

performance. This feedback includes basic metrics such as the number of submission attempts,
time taken, and percentage correct (in case some questions were left incorrect or unanswered).
This information helps users identify areas where they excelled and those where improvement
is needed, guiding their future learning efforts.

4.2 Digitally Enhanced Assessment Process
The features of AutomaTutor allow to introduce a digitally enhanced assessment process that
overcomes several shortcomings of the classical assessment process. This section delves into
the specifics of this enhanced process (see Figure 8), illustrating how each step is redefined to
facilitate a more effective and engaging learning environment.

4.2.1 Design
In AutomaTutors digitally enhanced assessment process, the design phase is streamlined. In-
structors can specify the parameters for the assessment types and difficulty levels, and the tool
automatically generates a variety of exercises and assignments, including memorandum solu-
tions. This feature not only saves time but also ensures a diverse range of questions, tailored
to meet the course’s learning objectives effectively.

4.2.2 Solve
Students engage with AutomaTutor to solve the generated question sets. The usability fea-
tures of the app, such as gesture-based interactions and automatic layout adjustments, make
the solving process more intuitive and efficient. This immediate interaction with the tool
facilitates an active and immersive learning experience, vital for understanding automata the-
ory. If the question sets are used as exercises, then the app provides immediate feedback in
the sense of hints and counterexamples. This instant feedback mechanism ensures that any
misconceptions are addressed promptly, facilitating a more effective and responsive teaching
environment. Hints can be disabled when question sets are used as assignments.

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjcwM2U6ODhlZTU5OWJmODBiYWY3ZjhlNzk5NGFjOWQwNWUyMzQzMmIwODIzN2E2NmUwMTdkYTcyOTg1OGYzN2QzM2NjNjpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 52

Instructor App Students

Instructor App Students

[instant]

[up to 7 days]

Generate

Distribute

Grade

Submit

Learn

Feedback

[until Correct or Period ends]

Solve

Pre-assesment Period

loop
Assesment Period

Post-assesment Period

Figure 8: Tool Assessment Process

4.2.3 Grade and Provide Feedback
A standout feature of AutomaTutor is its capability to deliver immediate grading and insightful
feedback. When students submit their responses, the tool promptly assesses them in compar-
ison to the memorandum solutions. Marks are automatically awarded based on the existence
or non-existence of counterexamples in the student solution. This automated evaluation not
only benefits students but also significantly advantages instructors.
For instructors, this functionality translates to a substantial reduction in the time and effort

traditionally spent on grading assignments. They no longer need to manually check each
student’s submission, a process that can be especially cumbersome in large classes. Instead,
AutomaTutors automated system handles the assessment.

4.2.4 Learn
Immediately after the submission of an assignment via AutomaTutor the students receive their
marks and, if applicable, counterexamples that illustrate why their solution is incorrect. This
instant feedback cycle facilitated by AutomaTutor allows students to quickly assimilate and

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjAxNWI6YzJlZDYwODRjZTRjZmZlMTgxNzYzNjk0ZTVjY2MzYmI5ZTg2ODc1ZTJlYzE2OTM2YTVlYzkwZTNjYjg2MzgyYzpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 53

rectify their mistakes, enhancing the overall learning process. This feature is particularly
beneficial in a course with a large number of students, as it ensures timely and personalised
feedback for each student, fostering a deeper understanding of automata theory.

4.3 Conclusions of the Enhanced Assessment Process
The integration of AutomaTutor into the assessment process of automata theory represents a
significant improvement over traditional teaching and assessment methods. The tool’s auto-
mation of exercise generation and grading not only reduces the instructor’s workload but also
provides students with an immediate and interactive learning experience. In the next section
we present experimental results on how the introduction of AutomaTutor impacts student per-
formance, engagement and satisfaction.

5 EVALUATION

In pursuit of understanding the efficacy of digital platforms in teaching automata theory, we
conducted an experiment1 with fourth-year computer science students at our university in
South Africa. The experiment compared two distinct teaching methodologies: traditional
paper-based assignments and app-based assignments. The objective was to assess how these
methods would influence students’ performance, their user experience, and the overall effect-
iveness of learning.

5.1 Methodology
This section provides a detailed guide to how the experiment was conducted. We explore the
steps, tools and procedures utilised to maintain transparency.

5.1.1 Participants
The participants comprised of 45 students enrolled in the fourth-year of their computer sci-
ence programme. Therefore, participants were expected to have a higher level of academic
maturity and subject expertise than an ideal test group. However, twenty of the students had
recently transferred from other institutions and claimed to have little to no expertise on the
subject matter. The remaining twenty five students had originally been introduced to the con-
tent being examined two years prior to the experiment. Given the two-year hiatus, the study
expected varying degrees of content recall among the participants. Furthermore, it should
be noted that participation was voluntary, and the students were briefed about the research
goals.
1 Ethical clearance for the experiment was received

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmNlMDI6NWQ3YzlmOTc3YWM1YTgxMTlmYmIyNWYzY2RjMWZmYmE0NjBmNWU0OGZjZjQxNGI0NTliZTUwMjRjN2UzNGE1ZDpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 54

5.1.2 Question Sets
A physical worksheet featuring three question types previously defined in Section 3.2 was used.
Mirroring the worksheet, AutomaTutor provided an interactive digital counterpart with three
questions of the same types and the same level of difficulty. The question sets are depicted in
Figure 9.

Digital Set
1. Provide a regular expression that
describes the language of the given
automaton.

s0

s1 s2

b

a

b a

a,b

2. Given the alphabet Σ = {a, b}
Construct an automaton that accepts
the language of strings that start with
at least two a’s followed by one b.

3. Given the alphabet Σ = {a, b}
Construct an automaton that accepts
the language of strings that consist of
exactly one ‘a’ and exactly one ‘b’.

Physical Set
1. Provide a regular expression that
describes the language of the given
automaton.

0

1 2

b
a

a,b

a

b

2. Given the alphabet Σ = {a, b}
Construct a 3-state automaton that
accepts the language of strings that
are an arbitrary concatenation of ‘ab’
and ‘aba’.

3. Given the alphabet Σ = {a, b}
Construct an automaton that accepts
the language of strings where the last
symbol is ‘a’ or all the symbols are ‘b’.

Figure 9: Question sets.

5.1.3 Questionnaire
Post-experiment, a questionnaire was used to gather qualitative data on the participants’ ex-
periences. It included various types of questions, from scaled responses to open-ended queries,
aimed at understanding user preferences and perceived challenges with both teaching meth-
ods. The following questions were included in the questionnaire:
1. Did you complete COS210 at the University of Pretoria?

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmVkZjc6ZGQ3MTBkODg3N2JjOTQxM2E0NTE2NjVmMDVkOGVmYzkwMzQyMWJhNzk4OTUxY2U0N2NlMzAxYzUwOWE2ZGJiNjpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 55

2. Which exercise did you start with?
3. How would you rate your overall experience using pen and paper for solving exercises?
4. How would you rate your overall experience using the mobile app for solving exercises?
5. Which format did you prefer for problem-solving: pen and paper or the app?
6. Please explain why you preferred the previously mentioned format.
7. Did you encounter any technical issues while using the app? If so, please elaborate.
8. Which questions were you able to complete on the app?
9. How many hints did you use on the app?
10. How many incorrect answers did you submit on the app?
11. What features of the app did you find most beneficial for learning?
12. What improvements could be made to the mobile application to enhance the learning
experience?

13. Do you have any additional comments or suggestions regarding this experiment?

5.1.4 Data Collection and Management
The traditional worksheets were manually graded and the data was digitised for analysis, while
AutomaTutor automatically graded the digital worksheets. For both types of worksheets, the
grading scheme was one mark for each correctly solved question and no marks for incorrect
solutions. Questionnaire responses were managed through a secure, anonymised platform.

5.1.5 Procedure
The experiment was conducted in a controlled setting to ensure minimal external influence on
the outcomes. The process was structured as follows:
1. Preparation Phase: A brief content refresher was provided, followed by an overview of
the study’s objectives.

2. Execution Phase: Participants were evenly divided into two diverse groups. The first
group initially interacted with the app, followed by a switch to the paper worksheet after
a short break. The second group interacted with the two teaching methods in reverse
order.

3. Data Collection Phase: Worksheets were collected for manual data recording, while
the app automatically exposed relevant metrics.

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjEzNWI6MjFkN2UzZTU1NjBlNTIyZjY1ZGNkYWYzZGMzMjY3MjQ4YTdmZWE1NzA5MGU2YmY0NDkyMzliNDhlNDUyOWNjMTpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 56

4. Feedback Phase: Participants completed a questionnaire to capture their subjective
experiences with each teaching method.

5. Data Management and Analysis: All data, both from the app and worksheets, were
digitised and securely stored for subsequent analysis.

The following section presents the results of this experiment, offering insights into the effect-
iveness of traditional versus app-based assignments in teaching automata theory.

5.2 Results
This section summarises the experimental results with regard to experiences and performance
of participants. The detailed results can be found in Appendices A and B.

5.2.1 Perceived Experiences by Participants
Participants were asked to rate their overall experience with each medium on a scale of one
to five, as depicted in Figure 10.

1 2 3 4 5

Ratings of Learning Media

Paper

App

3

4

Very poor Excellent

EvP 2024-10-09

Figure 10: Median ratings of Learning Media

The app-based medium garnered higher ratings, suggesting a more favourable participant
perception. Furthermore, when queried about their preferences, as illustrated in Figure 11, a
majority (58%) favoured the app over traditional paper worksheets.

0 100%

Preference
App Paper

58% 42%

Figure 11: Preferences of Learning Media (%)

When considering the reasons behind these preferences, participants highlighted feeling
less pressured and an enhanced freedom to experiment with solutions when using the app. The
immediate feedback and interactive nature of the app were seen as key factors that reduced
the stress typically associated with an exam-like setting and encouraged a more exploratory
approach to problem-solving.

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjU0MTc6YjA2MGI2ZDY0YWZhOWViNWQ0M2I4MzA3NWVkNjk5MDE3ZDQxYmQxNzRiMjQyZGViNzdmNTBiY2NkNzBjMDcwMDpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 57

Conversely, a notable proportion of participants (42%) expressed a preference for the tradi-
tional paper medium. This group valued the tactile and unrestricted nature of pen-and-paper,
finding it more conducive to brainstorming and free-form thinking.

5.2.2 Participant Performance per Medium
The stark contrast in performance between the two mediums, as depicted in Figure 12, neces-
sitates a critical examination. While the data shows a pronounced improvement in participant
performance using AutomaTutor, this is not solely indicative of the app’s ability to enhance
cognitive capabilities or learning efficiency. Rather, the key factor contributing to this dispar-
ity is the immediate feedback mechanism embedded within the app.

0 20 40 60 80 100
Average performance (%)

Paper

App
10%

77%EvP 2024-10-21

Figure 12: Average Performance by Medium (%)

The design of AutomaTutor allows students to receive instant feedback on their submis-
sions, enabling them to quickly identify and correct their errors. This feature is particularly
beneficial in a learning environment where understanding the nuances of automata theory
is crucial. The ability to immediately rectify mistakes fosters a more iterative and engaging
learning process, as opposed to the static nature of paper-based assignments where feedback
is delayed.
Furthermore, the app’s interactive nature may have contributed to lowering the barrier to

entry for students unfamiliar with the content. The app’s structured yet flexible learning envir-
onment provided these students with a more approachable way to engage with the material,
as evidenced by their successful performance in the exercises.
It is also noteworthy that students starting with paper worksheets showed a slight improve-

ment in their final grades. This suggests that while traditional methods have their limitations,
they still hold value and can complement digital tools in reinforcing learning.

5.3 Discussion of Findings
The experimental evaluation conducted with AutomaTutor provides insights into the effective-
ness of digital platforms in enhancing the teaching and learning process, particularly in the
context of automata theory. The results from the experiment lend strong support to our initial
hypothesis that a digital platform can enhance the learning experience compared to traditional
paper-based methods.

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmRmOGI6NWVjZTE1YmM5ZDEyM2IxZjhmODdhMDI4YmE4YmRmMjQ0OTI0Y2RiOGQ5NWQyNTg1ZTIxZTBhMjU0MjVmOWRiYjpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 58

The experiment demonstrated that the app’s immediate feedback mechanism and interact-
ive interface contributed to a more engaging and effective learning environment. This was
evident in the higher performance scores and preference ratings for the app. The ability of stu-
dents, especially those unfamiliar with the content, to perform well in app-based assignments
is indicative of the platform’s potential as a self-contained learning tool.
However, the experiment also revealed some limitations of the digital approach. While the

app was generally preferred and led to better performance, a notable proportion of participants
still found value in the traditional paper-based method. This suggests that the digital platform
might be more effective when used as a complement to conventional teaching methods, rather
than as a complete replacement.
In light of these findings, future improvements to the digital platform could focus on in-

tegrating features that replicate some of the benefits of traditional methods, such as free-form
brainstorming and the tactile experience of pen and paper. This enhancement could involve
developing a feature set centered around stylus-based input, allowing users to draw solutions
freely. This addition not only caters to diverse learning styles but also paves the way for future
advancements in computer vision research. It presents an opportunity to train models adept at
recognising and interpreting a variety of hand-drawn automata, integrating traditional draw-
ing methods with cutting-edge digital recognition technology.

6 CONCLUSION

This research introduced AutomaTutor, a mobile application designed to facilitate the construc-
tion, simulation of finite automata, and solving of interactive exercises on automata theory and
regular expressions. With a strong focus on usability and feedback features, AutomaTutor has
been tailored to guide users through their learning journey without necessitating additional
intervention from instructors.
The application’s capabilities for automatically generating random questions of various

types demonstrate its potential for a comprehensive learning experience. So far, the applic-
ation operates offline on the student’s mobile phone and allows them to generate exercises
as well as the memorandums. Work on an online version has started which will allow lectur-
ers to create and distribute exercises to all the students as well as track their scores using a
leaderboard system.
Our experimental evaluation, involving computer science students at our university, com-

pared traditional pen-and-paper methods with AutomaTutor for solving automata theory ex-
ercises. The results revealed a strong preference among students for the guided learning
approach offered by AutomaTutor. This preference was bolstered by the app’s immediate
feedback mechanisms and interactive interface, which contributed to a more engaging and
effective learning environment.
Looking ahead, we plan to integrate AutomaTutor into the Theoretical Computer Science

undergraduate module from 2024. We anticipate that the tool will enhance students’ compre-
hension of theoretical computer science’s abstract topics. Moreover, as automata theory forms

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjU3MGU6MjY4MzFkNTAyNTQyNjdhZjc4MDY0NWVjNDkwN2RlMGM4ZWRkZWQzZmIwODdlNjg0YzYxZmU2NmFlZGU4MTJiMjpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 59

a foundational aspect of several formal methods, the introduction of AutomaTutor also aims
to prepare and motivate students for advanced studies in formal methods at the postgraduate
level.
Future developments of AutomaTutor will focus on expanding the range of automata types

supported, including pushdown automata and Turing machines. Additionally, we intend to in-
corporate Kripke structures and Büchi automata to facilitate teaching model-checking subjects.
In response to student feedback, we will also refine the application’s usability, feedback, and
question generation features. This will involve integrating elements that replicate the benefits
of traditional methods, such as a stylus-input feature for free-form drawing and evaluation
of solutions, thereby fusing traditional learning approaches with advanced digital technology.
Another possible direction of future work is to have the generated exercises evaluated by sub-
ject matter experts.
In conclusion, AutomaTutor represents a significant step towards the digitalisation of the-

oretical computer science education. It not only offers an innovative alternative to traditional
teaching methods but also opens up new avenues for research and development in educational
technology. As it evolves, AutomaTutor has the potential to play a pivotal role in contem-
porary computer science education, contributing positively to the learning experiences and
achievements of both students and educators.

References

Bezáková, I., Fluet, K., Hemaspaandra, E., Miller, H., & Narváez, D. E. (2022). Effective succinct
feedback for intro CS theory: A JFLAP extension. Proceedings of the 53rd ACM Technical
Symposium on Computer Science Education – Volume 1, 976–982. https://doi.org/10.11
45/3478431.3499416

Bohnenkamp, H., D’Argenio, P., Hermanns, H., & Katoen, J.-P. (2006). MODEST: A compos-
itional modeling formalism for hard and softly timed systems. IEEE Transactions on
Software Engineering, 32(10), 812–830. https://doi.org/10.1109/TSE.2006.104

Brzozowski, J. A. (1962). Canonical regular expressions and minimal state graphs for definite
events. Proceedings of the Symposium of Mathematical Theory of Automata, 529–561. htt
ps://api.semanticscholar.org/CorpusID:118363215

Butkova, Y., Hartmanns, A., & Hermanns, H. (2021). A Modest approach to Markov automata.
ACM Transactions on Modeling and Computer Simulation, 31(3). https://doi.org/10.114
5/3449355

Chakraborty, P. (2007). A language for easy and efficient modeling of Turing machines. Pro-
gress in Natural Science, 17(7), 867–871. https://doi.org/10.1080/10002007088537
484

Chakraborty, P., Saxena, P. C., & Katti, C. P. (2011). Fifty years of automata simulation: A
review. ACM Inroads, 2(4), 59–70. https://doi.org/10.1145/2038876.2038893

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.1145/3478431.3499416___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjdjZmY6OGY0NzMyNGUzOTY4ZjgwODcwNmI4YzVmMDFlMjhiYWU1MTQ3OWQ5YThjMDEyZmVjYzMwMGZhZGZkYjM1M2I5MDpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1145/3478431.3499416___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjdjZmY6OGY0NzMyNGUzOTY4ZjgwODcwNmI4YzVmMDFlMjhiYWU1MTQ3OWQ5YThjMDEyZmVjYzMwMGZhZGZkYjM1M2I5MDpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1109/TSE.2006.104___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmU1ZDU6YWJiNmJhY2M1Yjg1ZDMzMmNiNjIzZWUwZjUzNTlhYjFhZDdlZDVlMjQzOTFlNTlhNzZlMzU3MTg1OGM1ZDk4MjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://api.semanticscholar.org/CorpusID:118363215___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjBkOTg6ZGRiOGQ4MmVlNDllNGNiNTcyMWUxNGUxYzA0ZGMzNWUxODdhNjFiMTJmYTE4OTFkMGNjMzA0YTlkMGNhNDRhNDpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://api.semanticscholar.org/CorpusID:118363215___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjBkOTg6ZGRiOGQ4MmVlNDllNGNiNTcyMWUxNGUxYzA0ZGMzNWUxODdhNjFiMTJmYTE4OTFkMGNjMzA0YTlkMGNhNDRhNDpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1145/3449355___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmNjMzA6ZDc1MThhYmNiZTIzZjRhM2Y5OWJiNWIxNWU0NjM0NGZhN2I0MGNiYzg1MzE3NjE5M2RhMDFhY2IwNmU3ODA5MDpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1145/3449355___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmNjMzA6ZDc1MThhYmNiZTIzZjRhM2Y5OWJiNWIxNWU0NjM0NGZhN2I0MGNiYzg1MzE3NjE5M2RhMDFhY2IwNmU3ODA5MDpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1080/10002007088537484___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmMzZDM6NmI2YTgxZTA2NjljNzc2YWRiMTBhNTgzMjhmMWRmMGExOWMxOTA4ZmExNmFjNDdjMTNiNGIzMGI5NjU1ZDJmODpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1080/10002007088537484___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmMzZDM6NmI2YTgxZTA2NjljNzc2YWRiMTBhNTgzMjhmMWRmMGExOWMxOTA4ZmExNmFjNDdjMTNiNGIzMGI5NjU1ZDJmODpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1145/2038876.2038893___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjYyODc6NmZmZTM4NjkwNzJhNGVlZTMxZTUxNzEwYzMxYzczOWU4MDg5MDQyMWQ0YmNlOTQ2ZjFlOThkZjhlZGE3ZTgxZTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmU2ZGQ6YmQ4OWE2NzJkMjE4NDgxNzI1NThjZWQxN2Y5OGFkNGU4YWU5ZDM0MzFjMWI1ZjA4MDUzMDg0NDY5ZWM5NmUzMjpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 60

Coffin, R. W., Goheen, H. E., & Stahl, W. R. (1963). Simulation of a Turing machine on a digital
computer. Proceedings of the November 12-14, 1963, Fall Joint Computer Conference, 35–
43. https://doi.org/10.1145/1463822.1463827

Cogliati, J. J., Goosey, F. W., Grinder, M. T., Pascoe, B. A., Ross, R. J., & Williams, C. J. (2005).
Realizing the promise of visualization in the theory of computing. Journal on Educational
Resources in Computing (JERIC), 5(2), 5. https://doi.org/10.1145/1141904.1141909

D’Antoni, L., Helfrich, M., Kretinsky, J., Ramneantu, E., & Weininger, M. (2020). Automata
tutor v3. In S. K. Lahiri & C. Wang (Eds.), Computer aided verification (pp. 3–14). Springer
International Publishing. https://doi.org/10.1007/978-3-030-53291-8_1

Hamada, M. (2008). Supporting materials for active e-learning in computational models. In-
ternational Conference on Computational Science, 678–686. https://doi.org/10.1007/9
78-3-540-69387-1_79

Hannay, D. G. (2002). Interactive tools for computation theory. ACM SIGCSE Bulletin, 34(4),
68–70. https://doi.org/10.1145/820127.820169

Harris, J. (2002). Programming non-deterministically using automata simulators. Journal of
Computing Sciences in Colleges, 18(2), 237–245. https://dl.acm.org/doi/pdf/10.5555
/771322.771357

Hartmanns, A., & Hermanns, H. (2014). The Modest Toolset: An integrated environment for
quantitative modelling and verification. In E. Ábrahám & K. Havelund (Eds.), Tools
and algorithms for the construction and analysis of systems (pp. 593–598). Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-642-54862-8_51

Jovanović, N., Miljković, D., Stamenković, S., Jovanović, Z., & Chakraborty, P. (2021). Teach-
ing concepts related to finite automata using ComVis. Computer Applications in Engineer-
ing Education, 29(5), 994–1006. https://doi.org/10.1002/cae.22353

Knuth, D. E., & Bigelow, R. H. (1967). Programming language for automata. Journal of the
ACM (JACM), 14(4), 615–635. https://doi.org/10.1145/321420.321421

LoSacco, M., & Rodger, S. (1993). FLAP: A tool for drawing and simulating automata. Educa-
tional Multimedia and Hypermedia Annual, 93, 310–317. https://files.eric.ed.gov/fullte
xt/ED360949.pdf

Maheshwari, A., & Smid, M. (2019). Introduction to theory of computation. Carleton University.
https://cglab.ca/~michiel/TheoryOfComputation/TheoryOfComputation.pdf

Middleton, J., Klassen, T. Q., Baier, J., & McIlraith, S. A. (2020). FL-AT: A formal language–
automaton transmogrifier. System demonstration at the 30th International Conference on
Automated Planning and Scheduling (ICAPS). https://www.cs.toronto.edu/~toryn/docs
/MiddletonICAPS2020flat.pdf

Pereira, C. H., & Terra, R. (2018). A mobile app for teaching formal languages and automata.
Computer Applications in Engineering Education, 26(5), 1742–1752. https://doi.org/10
.1002/cae.21944

Robinson, M. B., Hamshar, J. A., Novillo, J. E., & Duchowski, A. T. (1999). A Java-based
tool for reasoning about models of computation through simulating finite automata

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.1145/1463822.1463827___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjNmNTA6YTUzYjc4MWYwMjZiMjg4YWZhMjM5YzUwMDJkZWRkYjg5ZDQ3NGRiMjJiNTk3MDQyYTM1NThiMmM4NTg1Nzk3MTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1145/1141904.1141909___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmM5Y2M6OTA3NmMwYzAyMjAyYTA4OGYxNTRiMDVjZWM1OWFiMTkxMjMxNWIxZTUxMTllZjI0YTdlMGYyNjE1MGI5MzlmNDpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1007/978-3-030-53291-8_1___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2Ojc5YTY6NjM2MDE2MDQzYjNjMzU2YTRlMDAwYjhmZjU1NzY4NDIxNzBlYWIxOGU4MWU3MDRmYjhmOWZjYzJjNDJhYTM2NTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1007/978-3-540-69387-1_79___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmUxZWU6MjJkYjE0ODY4MzFkMTMzMWM0YTgxMzVmYzVkYjU1OTM3MTJmMzUzZDY4ZjQyNmNhMWNkZDMxMDA1YzYzMGM3ZjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1007/978-3-540-69387-1_79___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmUxZWU6MjJkYjE0ODY4MzFkMTMzMWM0YTgxMzVmYzVkYjU1OTM3MTJmMzUzZDY4ZjQyNmNhMWNkZDMxMDA1YzYzMGM3ZjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1145/820127.820169___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2Ojc2MTk6NjBkNzllMDEzNjkwOTE4NGExYjdlMGJmNWQ3NjExZDRlZTgwMGFmYjg2ZjJjMjc3ZjQ2OGUwNTAzOGJmNjdmZDpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://dl.acm.org/doi/pdf/10.5555/771322.771357___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmMxZjg6MjNlZTc1YTg3Y2NkOTgyMzQwMGY2MGI4YzM2MTJmNjVmNjFhM2M0M2QwOTg2NzE2ZGY2ZDhkYjg3ZGQwMGVlNTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://dl.acm.org/doi/pdf/10.5555/771322.771357___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmMxZjg6MjNlZTc1YTg3Y2NkOTgyMzQwMGY2MGI4YzM2MTJmNjVmNjFhM2M0M2QwOTg2NzE2ZGY2ZDhkYjg3ZGQwMGVlNTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1007/978-3-642-54862-8_51___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjllNmU6ODVhNzZiY2EzYWUyNmMxODMwZjMwYTk5MTI4YWNiM2ZmYjgyODRhMmViNzgyZmZmMGU5ZDY0OGJiZTZlODYwYTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1002/cae.22353___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmYxMmI6OWQ0YzIxZWE3NGM2ODMwM2VkNDQyYTJjNWE4Nzk1NTdhNWE2NzQ5ZDVhYWQ5M2Q1NzYwNzJjMjdkMTQ4YzM5YTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1145/321420.321421___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjQ4ZWE6NWEzNjE1ZjgyNzA4NzM0Njk1OTk3ZTUwYzBhOTE0OTAwZjc5OGMyOGE5NzNkZWY2N2M1ZTU4MzYzOTdlMTAyNTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://files.eric.ed.gov/fulltext/ED360949.pdf___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmNjOTg6ZjI0ZmM3NWFlNDRkMmE1NGY0M2EwMzJkYTVmNmYzMjBiMTMyNmU4NGJhMjRhNDMzYmM2ODYxZjg1OTA2OGUwMDpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://files.eric.ed.gov/fulltext/ED360949.pdf___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmNjOTg6ZjI0ZmM3NWFlNDRkMmE1NGY0M2EwMzJkYTVmNmYzMjBiMTMyNmU4NGJhMjRhNDMzYmM2ODYxZjg1OTA2OGUwMDpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://cglab.ca/~michiel/TheoryOfComputation/TheoryOfComputation.pdf___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjcwZGM6NmI5MmRkOThlYWNjM2NjNjNhN2FkMzAwZmQ2ZDczNzM4NDFkNjYzZWM2MzEzMmFiOWY3YzQxYTE0ODg2MjY4OTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://www.cs.toronto.edu/~toryn/docs/MiddletonICAPS2020flat.pdf___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjU0MzA6MTIwYTAzMWU5NmVhN2M0Y2YzM2M1NWM1M2M0Njc0YTA3MmY2N2YzZjdhMWM3NmFiYTNjNzZkOTgwNTFiODk3NjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://www.cs.toronto.edu/~toryn/docs/MiddletonICAPS2020flat.pdf___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjU0MzA6MTIwYTAzMWU5NmVhN2M0Y2YzM2M1NWM1M2M0Njc0YTA3MmY2N2YzZjdhMWM3NmFiYTNjNzZkOTgwNTFiODk3NjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1002/cae.21944___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjYyNGU6YWRjZmUyZDBiNGExNjkwNWIyMDlmN2QzOWE1MGQxZDJiOGIxYzgwM2E5ZDAzYTliYjE2NmYxYTAwYmYxZjQ3YzpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1002/cae.21944___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjYyNGU6YWRjZmUyZDBiNGExNjkwNWIyMDlmN2QzOWE1MGQxZDJiOGIxYzgwM2E5ZDAzYTliYjE2NmYxYTAwYmYxZjQ3YzpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmQ3OWI6ZGZjMTFmYTdhM2FlODMxMzc0NWM4ZjY2MDgzOGI3ODU4MDJmZDM2MjA4YTdhZGJkZWE3Mjc5ZTY4ZDNiZTk5NzpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 61

and Turing machines. Proceedings of the 30th SIGCSE technical symposium on Computer
Science Education, 105–109. https://doi.org/10.1145/384266.299704

Rodger, S. H., & Finley, T. W. (2006). JFLAP: An interactive formal languages and automata
package. Jones & Bartlett Learning. https://cs.emory.edu/~mic/cs424/jflap/book/jfl
apbook2006.pdf

Rodger, S. H., Wiebe, E., Lee, K. M., Morgan, C., Omar, K., & Su, J. (2009). Increasing engage-
ment in automata theory with JFLAP. Proceedings of the 40th ACM technical symposium
on Computer science education, 403–407. https://doi.org/10.1145/1539024.1509011

Romero, J. (2021). Pyformlang: An educational library for formal language manipulation. Pro-
ceedings of the 52nd ACM Technical Symposium on Computer Science Education, 576–582.
https://doi.org/10.1145/3408877.3432464

Silva, R. C., Binsfeld, R. L., Carelli, I. M., & Watanabe, R. (2010). Automata defense 2.0: Reed-
içao de um jogo educacional para apoio em linguagens formais e autômatos. Brazilian
Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educaçao-
SBIE). http://milanesa.ime.usp.br/rbie/index.php/sbie/article/view/1447

Singh, T., Afreen, S., Chakraborty, P., Raj, R., Yadav, S., & Jain, D. (2019). Automata Simu-
lator: A mobile app to teach theory of computation. Computer Applications in Engineering
Education, 27(5), 1064–1072. https://doi.org/10.1002/cae.22135

Stamenković, S., & Jovanović, N. (2021). Improving participation and learning of compiler
theory using educational simulators. 2021 25th International Conference on Information
Technology (IT), 1–4. https://doi.org/10.1109/IT51528.2021.9390132

Vayadande, K. B., Sheth, P., Shelke, A., Patil, V., Shevate, S., & Sawakare, C. (2022). Simulation
and testing of deterministic finite automata machine. International Journal of Computer
Sciences and Engineering, 10(1), 13–17. https://doi.org/10.26438/ijcse/v10i1.1317

Vieira, M., & Sarinho, V. (2019). AutomataMind: A serious game proposal for the automata
theory learning. Entertainment Computing and Serious Games: First IFIP TC 14 Joint Inter-
national Conference, ICEC-JCSG 2019, Arequipa, Peru, November 11–15, 2019, Proceedings
1, 452–455. https://doi.org/10.1007/978-3-030-34644-7_45

White, T. M., & Way, T. P. (2006). jFAST: A Java finite automata simulator. Proceedings of the
37th SIGCSE technical symposium on Computer science education, 384–388. https://doi.o
rg/10.1145/1124706.1121460

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.1145/384266.299704___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjYxNWI6Mjk1ZGIyN2FkNTdmMjNiMTgyNWQ4Y2M5YzdkYWY3M2E2MjZiZmE5N2YzN2Q5NGMxMjdkMDMxMzA1ZDkxZTJiZjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://cs.emory.edu/~mic/cs424/jflap/book/jflapbook2006.pdf___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmJiYzQ6YzJkM2Q3YmNhM2RhZmVmMGM5MzhkYzEyODZjZTYxNjIwYThjOGQ2YTlhNDQyZmQzZTc0OTE0ZGMyYTcxZGRiMjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://cs.emory.edu/~mic/cs424/jflap/book/jflapbook2006.pdf___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmJiYzQ6YzJkM2Q3YmNhM2RhZmVmMGM5MzhkYzEyODZjZTYxNjIwYThjOGQ2YTlhNDQyZmQzZTc0OTE0ZGMyYTcxZGRiMjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1145/1539024.1509011___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjkwZjI6NzY4MzcyOTFiYzg3YTU3NWI2MzEyM2E2MGRmYzU5ZTViYTE2OTI4NTljMmNlMDBjNTQxZGJiYjBkYTc2ZjEwOTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1145/3408877.3432464___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjQzZjE6ODA0OTdhYjM4YjIzYzk4NGQ0ZjNmYmU0ZTAzOTI0MDg5OTA1ZjJlYzE0M2I4YTU2Mjk4MDFhMjg2MTIzZWYzNzpwOlQ6Tg
https://protect.checkpoint.com/v2/___http://milanesa.ime.usp.br/rbie/index.php/sbie/article/view/1447___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2Ojg3MGI6OWJjZWY2MDM5MmQzMDBjN2IyMzYxZmQzYzRlMjhkNDUxMGQ0NWMyODk1ZmM0MDcxZDU2NDc0ZGU2MmRiZDg5MzpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1002/cae.22135___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjIwMTM6MmU2NjVlODhkMWYxYmEwOWVmNmE4MjdhZTZiMzU0NjZmNjE2OTVmMDc4ZmU4OTJjNTU4ODI0N2JmN2E2YWNiOTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1109/IT51528.2021.9390132___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmE0NTk6OGM2YzRhNDQyYThlNzBiMDQ5N2I0NGIyMjM0NTE1OTQ0NTEzNTMyYTFkNDdmYTIyNWM5YTQyNDk3MTBmMjZjMTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.26438/ijcse/v10i1.1317___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjdhZDA6YjhjYzQwNGNkYjRiNTA1MmY3ZWU2NmE1Mzc1MGFiYmI3OWMwYWUzMTFkZWFlODQ0Mjk1MDczMTFhMDMwNTlkYTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1007/978-3-030-34644-7_45___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmQyMmM6ZjEzOTM4M2UyNjJjYTQzYTg3YWI5NGQ5ZWM2ZTczODY5OTQ2OGY1YzlmNWZlNmM2ZGQ1MjEzYTAzMjNhZDU4MjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1145/1124706.1121460___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjdiN2E6MzJjNzFjYTVlYTk3NWZhOWQxMWNmNmUzZGY2YTM3MTllMGZiNDk4MTE1YTM4MTU2NmIwNTNlMDg4YzkwZTAwMzpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1145/1124706.1121460___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjdiN2E6MzJjNzFjYTVlYTk3NWZhOWQxMWNmNmUzZGY2YTM3MTllMGZiNDk4MTE1YTM4MTU2NmIwNTNlMDg4YzkwZTAwMzpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjNkOTg6OTg0NGNmM2EzOTViMzRmZjJjOTdiODEzOGZkNmE4ZWIyNDQ2MmY5NzA0ZmVmOWJmZTQwNWY4ZGEzZmNjNzlhNTpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 62

A DETAILED QUESTIONNAIRE RESPONSES

In this appendix we provide the detailed responses to the questionnaire that was used in the
experimental evaluation.
Figure 13 shows the responses to demographic questions.

0 3838 respondents

Which exercise did
 you start with?

Did you complete
 COS210 at UP?

Pen and paper Mobile app
20

53%
18

47%

Yes No
23

61%
15

39%

Figure 13: Demographics

Figure 14 shows the responses to user experience questions.

38 respondents

Pen and Paper

Mobile App

7
18%

7
18%

15
39%

4
11%

5
13%

3
8%

5
13%

8
21%

15
39%

7
18%

Rating (Very poor to Excellent)

How would you rate your overall experience for solving exercises?

1 2 3 4 51 2 3 4 5

Figure 14: Experiences

Figure 15 shows the responses to the question with regard to preference in terms of the
format of solving exercises.

0 38Number of reponses

Preference

Mobile app Pen and paper
22

58%
16

42%

Which format did you prefer for problem-solving: pen and paper or the app?

Figure 15: Preference

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjY1YmQ6ZTE2NGY5ZjZlNjBlMjA2NTA1ZDMyYmFhMzQwOTFiMmRkZjY4NjNlZGQ5MmQ0YjkxOGI4ZjMxYTAyYjE2NDMyYTpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 63

Figure 16 shows comparative results of the experimental evaluation.

0 10 20 30 34
Number of responses (34 respondents)

Question 3
 - Filling in the missing automaton labels

Question 2
 - Constructing an automaton

Question 1
 - Automata to Regex Conversion

Which questions were you able to complete on the app?

30

30

28

EvP 2024-10-09

(a)

0 3 6 9
Number of responses (38 respondents)

Last 2 thirds
23
16
14
13
12
11
10

7
4
3
2
1
0

How many incorrect answers did you submit on the app?

1
1
1
1
1
1
1

2
3

1
2

9
6

8

EvP 2024-10-09

(b)

Figure 16: Comparative results

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjZhYjc6ZDU4MjYwMGIwNzY5NjNiMDE1OTJlYTA2ZThmNjRkZWQwZGNkYmU2NzRiYWIyODE0OTIyMjU2MGYyMTg3NmM4NzpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 64

0 5 10 15
Number of responses (38 respondents)

most/all
16
10

6
5
4
3
2
1
0

How many hints did you use on the app?

2
1
1
1
1

2
2

4
7

17

EvP 2024-10-09

(c)

0 5 10 15 20 25
Number of responses (38 repondents)

Counter Example Generation

Audio Feedback

Regular Expression Workspace

Hints

Automaton Workspace

Tutorial Pop-ups

Mobile Accessibility

What features of the app did you find most beneficial for learning?

8

11

14

18

20

21

25

EvP 2024-10-10

(d)

Figure 16: Comparative results (continued)

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjQ2Zjk6MGNmMGY0MjJlYTg3NDhhYmI5N2E1Y2FhYTAzOTYyYzYxMGM3ZmY1NDk4MzU0MzkxODRlZjlkMzEyMDJhMzY2OTpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 65

B ANSWERS TO OPEN-ENDED QUESTIONS

Please explain why you preferred the previously mentioned format.
• Making a mistake was a lot easier to fix since you can just undo the last one or remove a part of it.
• I got have scrap paper and work through it
• First it saves paper, and I can attempt anywhere anytime any assessment is given to me
• The phone wasn’t as convenient
• The interface was intuitive and easy to understand after the tutorial. I was not slowed down by writing and erasing-rewriting my
answers as much with the app.

• Because it is linked to what I was used to
• Idk man. Pen and paper made me feel like I’m in an exam of sorts.
• Something that I’m used, plus I can jot my working out process before providing my answer
• Guided, provided hints, easier to know what is wrong while learning, less mechanical
• I like the visualization and the simplicity of using the application
• Na
• Prompt feedback made me excited to learn
• Found it simpler
• Easier to draw out the automata to a format I want and understand
• I found it easier to process the question when I had paper
• It was easier to see if i was wrong or not
• Having the feedback of correct vs incorrect helped solve the questions
• Space to scribble and make rough work.
• The feedback (on submit) was great.
• Because is understandable and it has instruction
• It offers a more familiar way of doing things or solving problems
• There was a learning curve drawing the automata on the mobile app
• I could edit at the point of error without undoing all steps before I realized error
• It had tips
• I feel indifferent, pen and paper allows you to work out different options, the mobile app requires you to calculate the options in
your head or revert back to pen and paper defeating the purpose of it

• Even though it can also be done when using the mobile app, what I found easier with pen and paper is to jot down your your working
outs. Especially with these types of questions that require you to work out a solution. It is quite difficult to do so when using a
mobile app.

• I preferred the app as it provided a less permanent mode of solving the task (I could change my answers and problem solve without
having to scratch out or use scrap paper) and I was able to easily change answers as I problem solved. The hint functionality is also
a great feature for those who need assistance.

• I felt that it was easier to complete the questions and I could try something and erase if it was wrong easily with the push of a button.
I also liked the fact that there were hints and feedback provided so that I could immediately see when I was wrong, what I was doing
wrong so that I could fix it.

• Helps visualise the solution
• A visual representation of the problem helped me somewhat comprehend what I was supposed to do than the pen and paper
• I prefer the previously mentioned format because I was able to complete correctly 2 questions even though I didn’t have enough
knowledge on the topic.

• It’s easier to use

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmNiMjQ6NTlkNWI0ODkxZTI4OTM2ZDIxZmU4NjBmZDIzZTBmZDlkNGEzMjk3NjZmYTQwM2M4OTQyOGZjZjllNDlkYWVhMjpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 66

• Familiarity, the mobile app was a bit confusing to navigate
• The mobile app has instructions with diagram and is more intuitive instead of having to draw out the diagrams for automaton and
scratching it out if a mistake was made which cause the answer to illegible at times

• I don’t have any idea for this lecture
• The hints were really informative and helpful. The game experience also made it more interesting.
• It felt like a game. Made me want to solve more problems.

Did you encounter any technical issues while using the app? If so, please elaborate.
• No
• No.
• When making a figure some explaining would be nice and the ability to see your language
• It feels like a drag and drop interface would be better
• It kept rejecting my answer
• Nope
• Yeah I had to resubmit wrong solutions to see the example expression due to a timer
• Yes, the pop ups disappeared and I couldn’t view them again
• No, maybe the wording was a bit confusing, but that could also be my rusty knowledge
• None.
• no
• It was not ergonomically friendly
• No issue experienced
• No the tutorial was just a bit too long
• Cant navigate to a specific character, you have to backspace all the characters to get to the one you want to change
• Yes I did. I pressed one of the buttons below multiple times and the web site crashed
• None at all
• No I didn’t
• Yes. I couldn’t figure out the interface.
• No issues
• The button to bring back the hints only worked for the first click.

Do you have any additional comments or suggestions regarding this experiment?
• No
• Nope
• None
• N/A
• Cool idea. Wish it was a thing when I did 210.
• I want to see a much more complex example be rendered on a small mobile device interface.
• Something about popup tutorials urks me
• Nothing made sense for me.
• Well made
• No

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmRmYWI6MWY4ZGNlOTlmMGNjOTQ3OTc3MzI2ZjU0NWUwNDliNmVmYjMwMzZlZDBlMTMyNGI4ODM1NTIzOWM1ZjUwY2IzMzpwOlQ6Tg

Jordaan, S., Timm, N., and Marshall, L. : Migrating teaching of automata theory to a digital platform 67

• I would make the option to reopen the tutorial pop up a bit more clear
• A gif or example illustrating how things work.
• no
• Its has great potential. Just wondering if it could handle very large automata. At least drawing them
• Allow user to click on point of error and only change that portion as opposed to undoing all steps to get to that point
• None. Great experiment!
• More sounds!
• The experiment worked work actually
• Very well done!

https://doi.org/10.18489/sacj.v36i2.17844

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.17844___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmEwZTc6OWQ3NjEwZjk3Zjg0NThmZGZmOWMzYjVjYmFhNTg3OTczMjVmMmEyMzdiOTBkYTk4ZWEyZTUxYmUyMzA2NTc0NjpwOlQ6Tg

	Introduction
	Objectives and Methods
	Summary of Findings
	Implications and Conclusions

	Related work
	Classification of Automata Simulation Tools
	Language-Based Tools
	Table-Based Tools
	Canvas-Based Tools

	Recent Advances and Mobile Applications
	Educational Impact
	Game-Based Learning Approaches
	Summary

	Teaching and Assessment of Automata Theory
	Foundations of Finite Automata and Regular Expressions
	Assessment Questions on Finite Automata and Regular Expressions
	Assessment Process
	Design
	Solve
	Grade and Provide Feedback
	Learn

	Conclusions of the Assessment Process

	Digital Framework for Teaching and Assessment of Automata Theory
	Core Features
	Usability
	Generation
	Feedback

	Digitally Enhanced Assessment Process
	Design
	Solve
	Grade and Provide Feedback
	Learn

	Conclusions of the Enhanced Assessment Process

	Evaluation
	Methodology
	Participants
	Question Sets
	Questionnaire
	Data Collection and Management
	Procedure

	Results
	Perceived Experiences by Participants
	Participant Performance per Medium

	Discussion of Findings

	Conclusion
	Detailed Questionnaire Responses
	Answers to open-ended questions

