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ABSTRACT
The industrial world has witnessed an increased demand for computing based skills due to the advent of robotics,
artificial intelligence, and analytics. However, the learning of computer programming is challenging and requires
an intensive cognitive effort to attain a high degree of skill and expertise. Given this phenomenon, this study
undertook to ascertain the factors that influence proficiency in computer programming. The study adopted a
quantitative approach and a survey research strategy, guided by a conceptual model. A survey questionnaire
was designed as the primary source of data collection. The respondents comprised students who were enrolled
for Information Systems and Technology (IT) courses at a higher education institution. The main factors that
were identified as significant predictors of computer programming performance were Problem-Solving Ability
and Self-Efficacy. The findings contribute to enhancing computer programming pedagogy, which could lead to
enhanced student performance in assessment, and validation of the conceptual model.
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1 INTRODUCTION

The industrial world has witnessed an increased demand for computing based skills, partic-
ularly in the domain of computer programming. The demand for computer programming
expertise has been elevated by the emergence of the 4th Industrial Revolution (4IR), which
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has compelled members of society to become intelligent users of technology. Technological
intelligence is embedded in 4IR systems such as robotics, data analytics and artificial intelli-
gence (AI) by virtue of computer programming logic. The specific demand is for skills that
translate to job roles such as business analytics, data analytics, project management, computer
programming and testing, systems analysis and design, and database and network administrat-
ors (Abdunabi et al., 2019). The demand for these skills is expected to escalate by 13% in the
period from 2016 to 2026 (Abdunabi et al., 2019). Central to all of these job portfolios is
either a deep or conceptual understanding of computer programming. A multitude of factors,
including inherent interest, financial stability and the need for acquiring IT expertise have
propelled an increasing number of students to register for technology-oriented courses that
provide a substantive exposure to computer programming content (Kori et al., 2015). The
rise in student enrolments for technology related courses has, unfortunately, been paralleled
by an increase in poor performance and failure in these courses. Students have consistently
performed poorly in programming assessments at the higher education level and university
courses with programming involved in the curricula have also experienced significantly high
dropout rates (Luxton-Reilly et al., 2018). A large number of institutions recorded high rates
of failure in introductory programming courses (Konecki & Petrlic, 2014; Peng et al., 2017).
It is within this context that the economic sector requires that graduates who are proficient

in computer programming, thereby enhancing their employability and ensuring they add value
to the sustained imperative to embrace 4IR technologies. Currently, academic studies have
not been conclusive or convergent in their attempts to ensure that cognisance is given to a
core set of factors that will allow students to acquire proficiency in computer programming.
To address this gap, this article seeks to answer the following main research question: “What
are the factors that influence proficiency in computer programming at the higher education
level?”

2 LITERATURE REVIEW

Quality in the field of teaching and learning, and specifically e-learning, has become of para-
mount importance for academic staff and students (Pawlowski, 2007). It has been established
that academic performance in computer programming requires a significant cognitive effort
from students. However, there are many factors that contribute to this cognitive load and an
understanding of these factors is pivotal to ensuring that the failure rates in computer program-
ming modules is reduced. The factors that influence the proficiency of computer programming
are diverse and range from demographic variables, such as gender and programming experi-
ence, to psychological variables, such as intrinsic and extrinsic motivation to learn computer
programming. This constellation of factors provides the basis for the discussion that follows.
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2.1 Self-Efficacy in Computer Programming
Self-efficacy (SE) is described as a person’s evaluation of their inherent abilities and skills
and whether or not their competencies can be used to deliver outcomes that bear a positive
effect on their community (Bandura, 1977). According to this definition, SE refers to an
individual’s confidence in their ability to produce a desirable outcome. Attitude towards the
subject matter and SE are among the most important factors in determining one’s success in
a particular field (D. W. Govender & Basak, 2015). A study involving 83 secondary school
students conducted by Kallia and Sentance (2019) established that those students who did not
understand the functions of some core programming statements rate lower in self-efficacy as
compared to students who understood these statements well. Students who faced difficulties
earlier on in their experience with programming are more likely to adopt an overall view
of computer programming as being inherently difficult. There is a strong link between SE
in problem solving and SE in computer programming, suggesting that students who have
confidence in their problem-solving ability tend to perform better in computer programming
tasks (I. Govender et al., 2014).
A study conducted with 433 programming students reported a strong correlation between

students’ programming SE and their sense of satisfaction and interest in the module, which
was also linked to students’ performance in an introductory programming module (Kanaparan
et al., 2019). Teachers should, therefore, pay attention to their students’ SE rates/levels be-
cause the theory states that the more SE a person has, the more resilient they will be with
regard to challenges and obstacles faced in computer programming. A study conducted with
214 computer science students at 3 different universities assessed students’ self-assessments
when encountering different programming practices such as getting a syntax error or plan-
ning (Gorson & O’Rourke, 2020). The study also looked at the students’ mental imagery of the
competence required to be a professional programmer and found that students who believed
that they could not acquire this level of competence had low levels of SE, resulting in poor
performance in computer programming assessments.

2.2 Programming Experience
Learning programming is very much about learning by doing. Students who have had previous
experience with learning programming, through high school classes or their own independent
efforts, perform better in programming courses at university (Kori et al., 2016; Lishinski et al.,
2016). Students in one study who had previously taken a programming course, perhaps in
high school, had a significantly easier time reading and understanding the programming lan-
guage as compared to first-time programming students (D. W. Govender & Basak, 2015). It
has been demonstrated that students with previous knowledge or engagement with computing
programming have a higher level of SE towards computing skills (Kolar et al., 2013). This
shows that Programming Experience can positively affect SE as it gives students an idea of
what to expect. Such knowledge would increase their confidence going into a computer pro-
gramming course at a higher education institution. The greater the Programming Experience
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of students, the higher their level of programming SE (Kittur, 2020). These findings suggest
that getting students involved with programming from their schooling years will support their
SE in programming-related courses (Kittur, 2020).

2.3 Intrinsic and Extrinsic Motivation
The construct of motivation can be categorised into two broad categories, namely, intrinsic
motivation (IM) and extrinsic motivation (EM) (Ryan & Deci, 2000). IM refers to a person who
is motivated to do something because they get enjoyment and pleasure from doing that task.
EM means that a person is motivated to do something because of the outcome they will re-
ceive or to avoid a negative consequence. A study by Gottfried (1985) found that intrinsically
motivated students had more academic success than extrinsically motivated students. IM and
EM are significant factors that determine performance in computer programming because of
the inherent nature of programming itself (Tavares et al., 2017). According to Fang (2012),
students who experience excess amounts of difficulty in programming may have low levels
of self-efficacy, which also reduces their motivation towards the subject; nevertheless, their
motivation can increase with aspects of programming that they do find enjoyable. Most stu-
dents in this study said that, in particular, they enjoyed learning programming through using
robotics as it felt like a fun activity rather than learning a skill (Fang, 2012). It has also
been found that students who had previous knowledge and engagement with computer pro-
gramming displayed more EM than students with no programming experience (Aivaloglou &
Hermans, 2019).
In another study (Yacob & Saman, 2012), programming students were found to have two

main sources of IM, namely, attitude and setting themselves stimulating goals. The aspect of
attitude tended to come from the student’s prior experience with programming and whether
or not the current programming content that they learnt met their expectations. The extrinsic
factors that were found to motivate students were “clear direction, reward and recognition,
punishment and social pressure and competition” (Yacob & Saman, 2012, p. 426). Each of
these factors were found to positively contribute to students’ motivation to engage with the
programming content. The effect of gamification on students’ motivation and performance in
programming was the focus of another study (Khaleel et al., 2019), which found that gami-
fication exploits the EM that all humans naturally possess and uses this motivation to make
learning less boring and more satisfying and rewarding. Andriotis (2014) reports a majority
(80%) of student respondents as saying that they would enjoy their higher education studies
more if game-like elements were included in the courses, and 60% reported that their motiva-
tion would increase if their university displayed leader boards as this would encourage more
competition between their peers and themselves.
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2.4 Problem-Solving Ability
Problem-solving abilities required in mathematics are very similar to the cognitive skills re-
quired in computer programming. The syntax of a computer programming language coupled
with the semantics of the logical rules and data structures provide the theoretical foundation
for problem solving. There is a correlation between problem-solving ability, the mental model
of the problem domain and computer programming performance (Lishinski et al., 2016) This
finding applied to the advanced aspects of computer programming, where the students had
to develop a fully-fledged computer programming solution to a real-life problem. The role
played by the syntax and semantics of computer programming code has been explored in a
phenomenological study (I. Govender, 2021) which focused on the difficulties that novice
programmers face when they learn to program. In order to enhance the mental model visual-
isation of the problem domain, what is important is a “scaffolding” approach to the teaching
of computer programming that entails a strong focus on baseline knowledge involving com-
puter programming language syntax and an inculcation of a deep understanding of data types
and structures (I. Govender, 2021). Once these fundamentals have been entrenched, students
will be cognitively prepared to engage in incremental learning that involves algorithm devel-
opment and problem solving. These learning challenges have been documented by various
studies: one (Robins et al., 2006) highlighted the difficulties faced in learning looping and ar-
rays; one (Goldman et al., 2008) noted the problems students face with learning inheritance;
and one (Garner et al., 2005) alluded to the abstractionism inherent in understanding how a
constructor instantiates an object of a class.
Some authors have stressed the importance of problem-solving ability as a crucial factor

in enhancing algorithmic thinking capacity (Malik et al., 2019; Romero et al., 2017). Al-
gorithmic or computational thinking has been defined as “the thought processes involved in
formulating problems and their solutions so that the solutions are represented in a form that
can be effectively carried out by an information-processing agent” (Wing, 2008, p. 3717). A
study conducted with 113 Information Technology and Engineering students at a university
found that, when students spent additional time on improving problem-solving skills, this had
a positive effect on their perceived ability to learn programming (Lawan et al., 2019). An-
other study (Kinnunen, 2009), comprising interviews with five computer science lecturers at
a university about the reasons for students’ poor performance in programming courses, found
that all five agreed that students tend to lack the fundamental skills needed for analysing and
solving a problem. A preliminary study (Bain & Barnes, 2014), which questioned students on
the challenges experienced when learning how to write computer programming code, demon-
strated that 50% of the students did not have a strategy for dealing with problems that arose
while writing the code. The main method of trying to solve the problem was to turn to In-
ternet searches. It was also found that 53% of students did not understand how different
programming concepts and elements of code related to the bigger picture and how small sec-
tions of programming topics connected with others to form a whole solution to a problem.
The study concluded that the fundamental issue with learning programming was inadequate
problem-solving methods and a lack of critical thinking. It has been recommended that, be-
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fore students begin to engage in computer programming assessment tasks, they should have
foundational knowledge of problem-solving strategies and procedures (Loksa et al., 2016).

2.5 Deep and Surface Learning
The approach that students adopt towards learning has been a topic of extensive research
pertaining to higher education (Lonka et al., 2004; Trigwell et al., 1999; Vanthournout et al.,
2013).
A study (Marton & Säljö, 1976) introducing the concepts of a deep learning and a surface

learning approach found that students who tried to obtain a genuine understanding of the
academic material had a deep approach to learning. This type of student attaches personal
value to the concepts and knowledge gained in class. Students who, on the other hand, use
memorisation and rote learning techniques rather than understanding to pass tests and exam-
inations are said to adopt a surface learning approach (Spada & Moneta, 2012). Students who
have a surface approach to learning may be able to pass and even excel in a subject; however,
their learning style is appropriate only in test and examination situations where they are re-
quired simply to reproduce information and, in situations where they are required to apply
this information in a practical way, they usually fall short. Students using a deep approach
to learning apply critical thinking skills, thereby enabling them to make connections between
different concepts more easily (Lindblom-Ylänne et al., 2019). There is a link between the
surface learning approach and SE: students with low SE, low motivation to study and negat-
ive beliefs about studying tended to use the surface approach to learning (Lindblom-Ylänne
et al., 2019). Students who participate more in class activities and adopt a positive attitude
towards computer programming will tend to engage in more deep learning techniques (Floyd
et al., 2009). In a study that entailed the interviewing of 177 university students who enrolled
in a programming module, it was established that students who scored high on deep learning
attributes also achieved high marks for their computer programming module (Fincher et al.,
2006).
Students can be encouraged to engage in deep learning strategies by being assessed through

project work instead of only being assessed through written examinations (Peng et al., 2017)
Moreover, through project work, educators can better monitor and aid students to identify
their weaker areas more efficiently (Peng et al., 2017). There is agreement that program-
ming needs to encompass both deep and surface learning approaches because of the fact that
programming is more of a skill than knowledge (Konecki & Petrlic, 2014). Teaching students
problem-solving skills and strategies will encourage students to adopt deep learning techniques
because it is the ability to analyse a problem and converge on a solution that comprises a deep
learning approach (Malik et al., 2019). One study (Ranjeeth, 2011) found that 50% of com-
puter programming students at higher education institutions tend to adopt a surface learning
approach for computer programming in introductory courses. The researcher suggests that
students tend to adopt this style of learning to meet the course requirements and to be able
to obtain a pass mark for programming assessments. Hence, the adoption of deep and sur-
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face learning in computer programming does become a factor that needs to be examined in
greater detail in terms of its influence on students’ performance in computer programming
assessments.
The literature review has been designed to provide a comprehensive coverage of the main

topics that prevail in this domain of study. The broad classification of topics, namely self-
efficacy, programming experience, intrinsic and extrinsic motivation, problem-solving ability
and learning styles, covered in the literature review led to the development of the conceptual
model illustrated in Figure 1 to guide the data collection phase of the current study. The next
section covers the methodology adopted for the study.

3 METHODOLOGY

A quantitative approach was adopted for this study (Saunders et al., 2009) This decision was
based on the observation that many of the correlation-based studies on the factors that influ-
ence academic performance in computer programming have been conducted using a quantit-
ative approach and a survey type of methodology.

3.1 Conceptual Model
The study’s conceptual model depicted in Figure 1 was constructed on the basis of the factors
that have been hypothesised to influence performance in computer programming. The factors
identified in Figure 1 were adopted from a range of studies (Bandura, 1977; Fang, 2012;
Gottfried, 1985; Kori et al., 2016; Lishinski et al., 2016; Spada & Moneta, 2012).
In Figure 1, the independent variables are Programming Experience, Problem-Solving Abil-

ity, Learning Styles (Deep and Surface) and Intrinsic and Extrinsic Motivation. According to
the literature reviewed, Programming Experience and Problem-Solving Ability have a direct
influence on a student’s SE regarding computer programming, and this manifests in a student’s
ability to learn computer programming. The Learning Style adopted by a student in terms of
deep and surface learning also has a direct influence on academic performance in computer
programming, as do IM and EM. According to Yacob and Saman (2012) both Intrinsic and
Extrinsic Motivation have a positive relationship to the learning of computer programming.
While it has been established that Programming Experience and Problem-Solving Ability have
an influence on performance in computer programming, these influences are mediated by SE.
The dependent variable in the study is the students’ proficiency/academic performance

in computer programming. This variable was measured by obtaining a self-assessment-based
rating of students’ performance in computer programming assessments. The students in the
Information Systems and Technology (IS&T) discipline at the University of KwaZulu-Natal
(UKZN) undertake formal practical assessments where they are required to use their program-
ming skills to display their proficiency in computer programming and provide a successful
solution for the task given to them. It was envisaged that the mark obtained by the students
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Figure 1: Conceptual model

would provide a guideline to enable the students to rate their individual performance in com-
puter programming assessment. This self-reported rating is used as an indicator of the students’
academic performance in computer programming. The strategy of using practical computer
programming assessment activity as an indicator of proficiency in computer programming has
been used in studies with a similar purpose to that of the current study (Bennedsen et al., 2007;
Edwards et al., 2019). SE in computer programming is theoretically linked to a students’ back-
ground and previous exposure to programming as well as their background in mathematics
and problem solving (Abdunabi et al., 2019). A student’s level of SE is also related to their
learning style because students with higher SE are more likely to adopt a deep learning style
as they tend to find the subject inherently interesting. Finally, the overall combination of
each of these factors, SE, Learning Styles, Programming Experience, Problem-Solving Ability
and Motivation is envisaged to result in a student’s achieving higher marks in programming
tests and examinations. The results of tests, and examinations then feed back into their SE,
if they have performed well in a test or examination, and this will work to increase their be-
lief in themselves and their programming abilities, which then results in them consistently
performing well on tests and examinations. Both IM and EM have a positive relationship to
the learning of computer programming (Yacob & Saman, 2012). Also, students who find the
subject more enjoyable will develop both IM and EM to work on programming tasks, thereby
ensuring that they are adequately prepared for examinations and assignments pertaining to
computer programming.
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3.2 Study Design
The site for the study was the Pietermaritzburg and Westville campuses of UKZN. Due to the
adoption by the university of online learning, the launch of the study questionnaire was con-
ducted during online lecture and practical sessions on the Microsoft Teams (3rd year, Honours
and Masters programmes) and Zoom (2nd year) video conferencing platforms.
The population for the study comprised all Information System and Technology (IS&T)

students that were enrolled for a computer programming module. The population consisted
of 2nd and 3rd year IS&T students, as well as Honours and coursework Masters students. The
total population of the study was 420 university students from the IS&T discipline. A census
approach was adopted where the sample size chosen for the study was also the total population
of the study, which was 420 students.
This study employed a structured, survey questionnaire as the primary source of data for

the study’s empirical analysis (Sekaran & Bougie, 2016). The questionnaire was designed to
resonate with the study’s conceptual model. Construct validity refers to the alignment between
the constructs of the study (which are referred to as unobservable variables specified at a
conceptual level) and the questionnaire items that are used to obtain a tangible measure of that
construct (Peter, 1981). A viable strategy to ensure construct validity is to align questionnaire
items to previous studies where these constructs and items have been validated. The study’s
main constructs were subjected to theoretical validation by using previous research efforts
with a similar objective and also included constructs identified in the study’s conceptual model.
Table 1 provides a summary of the sources of the questions measuring the constructs in the
questionnaire.

Table 1: Summary of the sources of questionnaire items

Construct Reference #items
Self-Efficacy Askar and Davenport (2009) 12 items
Learning Styles Mahatanankoon and Wolf (2021) 6 items
Motivation Amabile et al. (1994) 8 items
Problem-Solving Ability Tukiainen and Mönkkönen (2002) 10 items

The questionnaire was discussed with academics involved in the teaching of computer pro-
gramming in the IS&T discipline at UKZN. Comments and suggestions were then incorporated
into the questionnaire. The questionnaire was piloted with two IS&T Masters students and
two students from the IS&T Honours class.
The questionnaire was launched during formal online lectures by the academic staff mem-

bers who were lecturing in the 2nd year, 3rd year, Honours and Masters programmes. Students
were informed of the requirements regarding the questionnaire and were provided with an
opportunity to complete it during the computer programming practical sessions. The question-
naire was made available as an online survey. Students were required to answer programming
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related tasks to demonstrate their comprehension of conditional, logical and data structure-
oriented problems during their computer programming practical sessions at the University.
Students were given the latitude of completing these questions without any time restrictions.
Ethical clearance and gatekeeper applications were obtained prior to the data collection

phase. In terms of the survey protocol, the study respondents were informed of their volun-
tary participation in the study and in compliance with the Personal Protection of Information
(POPI) Act, no personal information was collected that could be used to directly identify the
study’s respondents. The anonymous nature of the survey meant that computer programming
performance would be a self-assessment rating, which was useful for estimating the construct
of academic performance. This self-reported measure of academic performance in computer
programming was validated against the respondents’ Problem-Solving Ability in the context
of computer programming tasks.
The two main statistical methods used were descriptive and inferential statistical analysis.

The descriptive statistics used comprised measures of central tendency (mean and median),
measures of variability (standard deviation) and frequency distribution. The descriptive res-
ults are displayed by stacked bar graphs and histograms. These data visualisation techniques
were used to provide an overall view of the empirical evidence with regard to the study’s
main constructs such as Programming Experience, Problem-Solving Ability, SE and Computer
Programming Performance in a formal computer programming assessment. The routine check
for data reliability was conducted via the Cronbach alpha test. The inferential statistics used
were the one sample t-test, tests of normality, the Pearson Correlation Co-efficient andmultiple
regression analysis.

4 RESULTS AND DISCUSSION

The primary data collection instrument consisted of a questionnaire that comprised two main
sections. The first section (labelled Section A) consisted of demographic questions and ques-
tions pertaining to levels of experience in the domain of computer programming and systems
analysis and design. The second section of the questionnaire comprised the core aspects that
addressed the main objectives of the study (see Table 2). There were 133 valid responses
received, constituting a response rate of 32% .

Table 2: Second section of the questionnaire

Section Response
label type Concept #items
Part One Likert scale Intrinsic and Extrinsic motivation 8
Part Two Likert scale Learning styles 6
Part Three Likert scale Self-Efficacy 12
Part Four MCQ Problem-Solving Ability and Computing Mental Model 10
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4.1 Demographic and Background Information of Participants
Section A of the questionnaire was designed predominantly to obtain demographic and back-
ground information from the study respondents. The demographic data pertaining to the level
of study is presented in Figure 2.

0 20 40 60 80 100

16% 63% 17% 4%

2nd year 3rd year Honours Masters

Figure 2: Level of study

Figure 2 illustrates that the majority of the respondents (63.16%) were in the 3rd level of
undergraduate study, followed by Honours level (16.54%), 2nd level of undergraduate study
(15.79%) and Masters (4.51%) level of study. First year students registered for IS&T modules
were not included as part of the target population as students in their 2nd year of undergradu-
ate studies may enroll for the module focusing on Introductory Programming for Information
Systems. The largest group of the respondents (79.7%) comprising 3rd year and Honours stu-
dents were in their respective exit levels, which would give an indication of their preparedness
for employment in the computer programming sector.
The academic college of affiliation of the study’s respondents is presented in Figure 3 show-

ing that 64% of the respondents were from the College of Law and Management Studies (LMS)
and 36% from the College of Agriculture, Engineering and Science (AES).

0 20 40 60 80 100

36% 64%

Agriculture, Engineering and Science Law and Management Studies

Figure 3: College of Affiliation

A summarised view showing an approximation of the years of computer programming ex-
perience acquired by the study’s respondents is provided in Figure 4. The majority of the
study’s respondents were affiliated to the College of Law and Management Studies (LMS), and
given the IS&T curriculum specifications, students from the College of Agriculture, Engineer-
ing and Science (AES) will in all probability have greater previous experience of computer
programming engagement.
The majority of respondents, that is 44.4% had between 0- and 2-years’ experience, while

31.6% had between 2- and 3-years’ experience, followed by 18% who had between 3- and 4-
years’ experience and lastly 6% who had more than 4 years of experience in computer pro-
gramming. These results are consistent with the College of Affiliation results, as AES students
undertake computer programming in the first year of their undergraduate curriculum whereas
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0 20 40 60 80 100

44% 32% 18% 6%

0-2 years 2-3 years 3-4 years 4+ years

Figure 4: Computer programming experience

BCOM students undertake an introductory programming module in the second year of their
undergraduate studies. Respondents that reported more than 4 years of computer program-
ming experience would include students that have computer programming exposure at high
school level and students undertaking the Masters qualification.

4.2 Tests of Normality
The study’s main constructs were subjected to the Shapiro-Wilk (SW) and Kolmogorov-Smirnov
(KS) tests of normality and are presented in Table 3.

Table 3: Tests for normality

Kolmogorov-Smirnov* Shapiro-Wilk
Statistic df Sig. Statistic df Sig.

Motivation Composite 0.112 133 0.000 0.952 133 0.000
LS Composite 0.095 133 0.005 0.980 133 0.045
SE Composite 0.069 133 0.200† 0.987 133 0.233

*Lilliefors significance correction
† this is the lower bound of the true significance

When it comes to normality testing, the null hypothesis states that the sampling distribu-
tions are not normal. As can be observed in Table 3 the constructs of Motivation and Learning
Styles (LS) pass the test for normality (null hypothesis rejected, p < 0.05). However, the
construct of Self-efficacy (SE) fails the test of normality (null hypothesis accepted, (p > 0.05)
because the probability that the sampling distribution is not normal is quite high.

4.3 Conceptual Model and Empirical Findings
4.3.1 Motivation to Learn Computer Programming
The construct of Motivation (to learn computer programming) has been represented by 8 ques-
tionnaire items where 5 represent intrinsic motivation (IM) and 3 represent extrinsic motiva-
tion (EM). An overall presentation of the responses is provided in Figure 5.
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(1) IM1: I prefer course material that really challenges me so I can learn new things and understand how they work

(2) IM2: When I don't understand something right away I try to figure it out by myself

(3) IM3: I prefer course material that arouses my curiosity even if it is difficult to learn

(4) IM4: Getting good marks for programming brings me a sense of personal satisfaction

(5) IM5: I engage with new technology so that I have a sense of control over the technology

(6) EM1: I want to do well in my programming modules because it is important to show my ability to my family, friends and lecturers

(7) EM2: I engage with new technology because that is what society expects of me

(8) EM3: I make an effort to master computer programming so that I can "fit in" with other students in my group/class
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Figure 5: Overall view of responses for the construct of Motivation
(sorted by positive responses)

Table 4: Measures of central tendency for Motivation

N Standard
Motivation Valid Missing Mean Median Mode Deviation
IM1: I prefer course material that really challenges me so I can
learn new things

133 0 3.67 4 4 1.029

IM2: When I don’t understand something right away I try to
figure it out by myself

133 0 3.87 4 4 0.900

IM3: I prefer course material that arouses my curiosity even if it
is difficult to learn

133 0 3.77 4 4 1.000

IM4: Getting good marks for programming brings me a sense of
personal satisfaction

133 0 4.23 4 5 0.900

IM5: I engage with new technology so that I have a sense of
control over the technology

133 0 3.84 4 4 1.006

EM1: I want to do well in my programming modules because
it is important to show my ability to my family, friends and
lecturers

133 0 3.65 4 3 1.095

EM2: I engage with new technology because that is what society
expects of me

133 0 3.02 3 3 1.225

EM3: I make an effort to master computer programming so that
I can “fit in” with other students in my group/class

133 0 3.20 3 4 1.209

The measures of central tendency for the Motivation construct are displayed in Table 4.
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As can be observed in Table 4, the mean response is in excess of 3 (M > 3) and the median
is greater than or equal to 3 in all cases (Mdn ≥ 3). To establish whether the mean and
median values are significant measures of central tendency for the dataset shown in Table 4
or whether these values occur by chance, the one sample t-test is used. The one sample t-test
may be used to determine if the mean of a sample is significantly different from a hypothesised
value (DeCoster & Claypool, 2004). In the context of the current data (Table 4), the null
hypothesis is that the mean (parametric) is equal to a hypothesised neutral value of 3 (H0:M=3)
and median (non-parametric) is equal to a hypothesised neutral value of 3 (H0:Mdn = 3). In
both cases, the alternate hypothesis is that these measures of central tendency are significantly
different from 3 (Ha ̸= 3). The t-test to establish the significance of the measures of central
tendency has revealed results that are identical to the non-parametric equivalent test, which
is the one-sampled Wilcoxon signed rank test illustrated in Table A1 in Appendix A.
As can be observed in Table A1 in Appendix A, the observed means were significantly

greater than the hypothesised means of 3 in 6 of the 8 (75%) questionnaire items. Five of the
6 items were aligned to observable measures of IM. The implication from this analysis is that
there is a significant (p < 0.05) tendency by the respondents to opt for responses that indicate
high levels of IM to learn computer programming. This result indicates that the majority of
the study’s respondents have IM towards learning and mastering computer programming. A
similar conclusion cannot be made when it comes to the EM factors; items 7 and 8 on the
questionnaire did not yield a significant (p > 0.05) outcome, thereby reducing the prospect of
a 95% confidence with conclusions made in terms of EM.

4.3.2 Learning Styles in Computer Programming
The construct of Learning Styles is represented by 6 questionnaire items where 3 of the items
were positively worded in favour of a deep learning style and the remaining 3 items were pos-
itively worded in favour of a surface learning style. Essentially the learning style component
represents students’ deep or surface Learning Styles adopted for passing computer program-
ming assessments. An overall presentation of the responses is provided in Figure 6.
The measures of central tendency for the Learning Styles construct are displayed in Table 5.

As can be observed in Table 5, the mean response is in excess of 3 (M > 3) and the median is
greater than or equal to 3 in all cases (Mdn ≥ 3). To establish whether the mean and median
values are significant measures of central tendency for the dataset shown in Table 5 or whether
these values occur by chance, the one sample t-test was used. The results of the one sample t-
test as well as the Wilcoxon Signed Rank test are shown in Table A2 in Appendix A.
As can be observed in Table A2 in Appendix A. the observed means were significantly

greater than the hypothesised mean of 3 for 6 questionnaire items (100%). The implication
from this analysis is that there is a significant (p < 0.05) tendency by the respondents to opt
for responses that indicate high levels of deep learning. Another significant observation is that
two of the questionnaire items that were positively worded to indicate surface learning were
also significantly (p < 0.05) greater than the hypothesised mean of 3. While the responses
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Figure 6: Overall view of responses for the construct of Learning Styles
(sorted by positive responses)

Table 5: Measures of central tendency for Learning Styles

N Standard
Learning Styles Valid Missing Mean Median Mode Deviation
LS1: I find most new topics interesting and will often spend
extra time trying to understand how they work

133 0 3.79 4 4 0.779

LS2: I find it helpful to study topics in depth rather than trying
to remember important facts for tests

133 0 3.79 4 4 0.835

LS3: I test myself on important topics until I understand them
completely

133 0 3.68 4 4 0.801

LS4: I tend to study best by using memorisation techniques 133 0 3.48 4 4 0.910
LS5: I find the best way to pass tests is trying to learn the an-
swers to likely questions

133 0 3.29 3 4 1.013

LS6: I prefer to ensure that I pass a course even though my
understanding of concepts may not be very good

133 0 3.47 4 4 0.989

pertaining to deep learning are indicative of the learning style used to master computer pro-
gramming, the high scores reported for surface learning are indicative of an intention from the
study’s respondents to also ensure that they engage in techniques of learning that empower
them with a maximum opportunity to pass the computer programming assessment activity.

4.3.3 Self-Efficacy in Computer Programming
The construct of Self-Efficacy (SE) is represented by 12 questionnaire items where 9 of the
items were positively worded in favour of high levels of SE and 3 questionnaire items were
positively worded in favour of low levels of SE. This construct consisted of questionnaire items
that were directed at specific aspects of computer programming. These aspects consisted of:
the ability to write procedural and object-oriented code (4 questionnaire items); the ability to
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debug and recover from errors and the ability to trace through the logic of computer program-
ming code (2 questionnaire items); the ability to compile a logical computer programming
solution to a given problem in a specified time range (4 questionnaire items); and the inclin-
ation to seek assistance when it comes to the writing of computer programming solutions (2
questionnaire items). An overall presentation of the responses is provided in Figure 7.
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(1) SE12: I could manage my time efficiently if I had a pressing deadline on a programming project
(2) SE11: I feel more comfortable to complete a programming problem if someone showed me how to solve the problem first
(3) SE10: I feel that I am better at programming when I get the help of someone else
(4) SE9: I am able to write computer programming code to sort out a given set of numbers into ascending/descending order
(5) SE8: I am confident of my ability to identify the objects in the problem domain and declare, define, and use them
(6) SE7: I could rewrite lengthy and confusing portions of code to be more readable and clearer
(7) SE6: I have a good understanding of the object-oriented paradigm for programming
(8) SE5: I could organize and design my program in a modular/procedural manner
(9) SE4: I am able to mentally trace through the execution of a long, complex program
(10) SE3: I have the capacity to easily identify errors in my programming code
(11) SE2: I am able to construct programming code that is logically correct
(12) SE1: I am confident of my ability to develop suitable strategy for a given programming task in a short time
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Figure 7: Overall view of responses for the construct of Self-Efficacy
(sorted by positive responses)

The aggregated outcome of the frequency representation for the SE construct is shown in
Table 6. As can be observed in Table 6, the mean response is in excess of 3 (M > 3) and the
median is greater than or equal to 3 in 10 of the 12 cases (Mdn ≥ 3). In 2 instances, the mean
and median response is less than 3. It should be noted that in both of the cases where the
mean and median were less than 3, the questionnaire items were phrased positively towards
lower levels of SE. The one sample t-test was used to ascertain whether the measures of central
tendency were significant or occurred by chance. The results of the one sample t-test as well
as the Wilcoxon Signed Rank test are shown in Table A3 (in Appendix A).
From Table A3, it can be observed that there is a significant difference (p < 0.05) between

the mean and median values for 10 of the 12 items. Questionnaire items 4 and 7 did not
yield results that are significant (p > 0.05), meaning that there was no significant agreement
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Table 6: Measures of central tendency for Self-Efficacy

N Standard
Self-efficacy valid missing Mean Median Mode deviation
SE1: I am confident of my ability to develop suitable strategy for a
given programming task in a short time

133 0 3.41 3 4 1.037

SE2: I am able to construct programming code that is logically
correct

133 0 3.55 4 4 0.957

SE3: I have the capacity to easily identify errors in my program-
ming code

133 0 3.47 4 4 0.997

SE4: I am able to mentally trace through the execution of a long,
complex program

133 0 3.09 3 4 0.981

SE5: I could organize and design my program in a
modular/procedural manner

133 0 3.37 3 4 1.026

SE6: I have a good understanding of the object-oriented paradigm
for programming

133 0 3.39 3 3 1.043

SE6: I have a good understanding of the object-oriented paradigm
for programming

133 0 3.09 3 2 1.011

SE8: I am confident of my ability to identify the objects in the
problem domain and declare, define, and use them

133 0 3.32 3 4 0.981

SE9: I am able to write computer programming code to sort out a
given set of numbers into ascending/descending order

133 0 3.70 4 4 0.985

SE10: I feel that I am better at programming when I get the help of
someone else

133 0 2.27 2 2 1.074

SE11: I feel more comfortable to complete a programming problem
if someone showed me how to solve the problem first

133 0 2.25 2 2 1.040

SE12: I could manage my time efficiently if I had a pressing
deadline on a programming project

133 0 3.51 4 4 1.027

on the ability to mentally trace through the execution of a long and complex program and to
rewrite lengthy and complex portions of code to make them more readable and clearer. This
demonstrates that the respondents’ self-efficacy did not extend to these two competencies.
The questionnaire items that were positively worded in favour of high levels of SE showed
a significant positive difference from the hypothesised neutral values for the mean and me-
dian. This outcome is indicative of a high level of SE being displayed by the respondents of
the study towards the handling of computer programming tasks. The preceding outcome is
further corroborated by the negative differences recorded for questionnaire items 10 and 11.
These questionnaire items were positively worded to indicate low levels of SE. The low means
and medians recorded are an indication that the respondents disagreed with the statements
attesting to low levels of SE when it comes to academic performance in computer program-
ming.

4.3.4 Problem-Solving Ability and Performance in Computer Programming
The construct of Problem-Solving Ability was operationalised/measured by adapting the com-
puter programming aptitude test used by Tukiainen and Mönkkönen (2002) in predicting com-
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puter programming competence. The test to measure computer programming competence was
presented to the study’s respondents as a series of problem-solving tasks that tested their cog-
nitive processing ability when faced with computer programming related questions. These
tasks were adapted to align with the computer programming content that was delivered to the
respondents of the current study during their tenure as students following the IS&T curriculum
at UKZN. The classification of questionnaire items used for the Problem-Solving Ability con-
struct is presented in Table 7.

Table 7: Classification of questionnaire items for Problem-Solving Ability

Computer programming concept Number of questionnaire items
Conditional Logic (Logical Operators) 2
Predictive Logic 3
Comparative Logic 1
Iterative Logic 2
Assignment Logic 1
Data Structure Logic 1

Respondents of the study were presented with the set of 10 computer programming related
tasks listed in Table 7 andwere required to provide a response that was structured as amultiple-
choice type of question. Each of the study’s respondents were scored on their performance by
allocating a point value of 1 for a correct answer and 0 for an incorrect answer.
In this way, each respondent scored a mark out of 10, thereby providing a quantified

indicator of the Problem-Solving Ability of the student.
The study’s respondents were also required to provide an approximate measure of their

academic performance in computer programming assessment. These values were recorded
using a scale of 1 to 8. A bivariate correlation analysis was conducted between the respondents’
academic performance and their Problem-Solving Ability. The results are presented in Table 8.
As can be seen in Table 8, the Pearson product-moment correlation coefficient (PPMCC) is

statistically significant (r = 0.59, N = 133, p < 0.01, two-tailed). The interpretation from this
result is that there is a significantly positive relationship between the respondents’ academic
performance in computer programming assessment and their Problem-Solving Ability in the
context of computer programming tasks. This result provides a measure of validity to the
construct of academic performance score, which is an estimated value provided by the study’s
respondents.

4.4 Reliability Testing
For the current study, three constructs were measured using a Likert-scale type of response.
The outcome of the Cronbach alpha reliability tests that were conducted on these constructs
are presented in Table 9.
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Table 8: Academic performance in Computer Programming vs
Problem-Solving Ability

Problem- Computer
Solving Programming
Ability Performance

(numeric)
Problem-Solving Ability Pearson Correlation 1 0.588*

Sigma (2-tailed) 0.000
N 133 133

Computer Programming Pearson Correlation 0.588* 1
Performance (numeric) Sigma (2-tailed) 0.000

N 133 133

* correlation is significant at the 0.01 level (2-tailed)

Table 9: Cronbach Alpha analysis

Construct No of Likert Scale Items Cronbach’s alpha
Motivation (intrinsic and extrinsic) 8 (IM1 to IM5, EM1 to EM3) 0.64
Learning Styles 6 (LS1 to LS6) 0.57
Self-Efficacy 12 (SE1 to SE12) 0.91

Cronbach alpha co-efficient values in the range of 0.7 and above are considered to be
good reliability estimates (Sekaran & Bougie, 2016). In Table 9, it can be observed that the
Cronbach alpha value for Learning Styles is 0.57 and that of Motivation is 0.64, from which
it is inferred that the questionnaire items used to measure these two constructs are not ideally
reliable. The constructs were subjected to further validity testing in the form of factor analysis.
This is described in the next section.

4.5 Confirmatory Factor Analysis
The process of variable reduction is conducted under the theory that, if the conceptual model
does not have an alignment with the study’s data, then the conceptual model needs to be
rearranged so that it has an optimal alignment with the study’s data. This process of fitting
the conceptual model to the study’s data is referred to as confirmatory factor analysis (CFA),
which is a crucial process in ensuring construct validity (Pham et al., 2020).
Three questionnaire items for Motivation and three questionnaire items for Learning Styles

identified as significant contributors to the “poor” Cronbach Alpha values in Table 9 were
removed from further analysis. In addition, to improve the model fit of the study’s conceptual
model, the modification indices were examined during CFA and three items that showed high
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levels of covariance with other items from the SE construct were removed. From an item
reliability perspective, the improvement in the internal consistency of the empirical model is
confirmed by the reworked Cronbach alpha values shown in Table 10.

Table 10: Re-worked Cronbach Alpha analysis

Construct No of Likert Scale Items Cronbach’s alpha
Motivation (intrinsic and extrinsic) 5 (IM1 to IM5) 0.83
Learning Styles 3 (LS1 to LS3) 0.72
Self-Efficacy 9 (SE1 to SE9) 0.93

In Figure 8, the ellipses labelled e4 to e8; e12 to e14 and e15 to e23 refer to the labels of
the arrow dumps. The boxes labelled IM1 to IM5, LS1 to LS3 and SE1 to SE9 represent the
measured variables. The circles labelledMotivation, Learning Style and Self-Efficacy represent
the latent variables, called factors. The item weights in the arrows between the latent variables
and the measured variables represents the factor loadings. The double headed arrows between
the latent variables Motivation, Learning Style and Self-Efficacy represent correlations
In the context of the current study, the “model fit” indicators arising out of Figure 8 are

Comparative Fit Index (CFI)=0.91, the Tucker Lewis Index (TLI)=0.9 and the root mean
square error of approximation (RMSEA)=0.082. The measurements for an acceptable model
fit are as follows: The CFI index measurement should be closer to 1; the TLI should be in the
range of 0,9 to 1; and the RMSEA should be less than 0.08. A RMSEA value that is less than
0.08 and a CFI value of 0.9 or greater are indicators of a good model fit. These results indicate
that the empirical model that will be used for the data analysis for the study is not a perfect fit
to the study’s data but it is closely aligned with the suggested test statistics to ensure a “good
fitting” model.

4.6 Correlation Analysis
The main aim of the study was to establish the validity of correlations between the study’s
main variables as well as the study’s conceptual model, illustrated in Figure 1. The course of
the correlation analysis is guided by the study by Musil et al. (1998).

4.6.1 Bivariate Correlation Analysis
The data representing the study’s main constructs is represented by ordinal scales and the
PPMCC may be used to determine the relationship between these constructs (Spada & Moneta,
2012). The Pearson correlation analysis was chosen to establish the significance of relation-
ships between the study’s main constructs. It was decided to use the questionnaire items
that were positively worded to ascertain levels of deep learning regarding the attainment of
good academic performance in computer programming for the generation of the bivariate

https://doi.org/10.18489/sacj.v36i1.18819

https://doi.org/10.18489/sacj.v36i1.18819


Ranjeeth, L., and Padayachee, I. : Factors that influence computer programming proficiency in higher… 60

0.61

0.80

e23 SE9

SE8e15

e21

e18

e17

e19

e20

e16

e22

SE7

SE6

SE5

SE4

SE3

SE2

SE1

e13

e12

e14

LS3

LS2

LS1

e4

e5

IM5

IM4

e6

e7

IM3

IM2

e8 IM1

Self-
Efficacy

Learning
Style

Motivation

0.82

0.68
0.72

0.70

0.85
0.65
0.58

0.84
0.76
0.76
0.86
0.74

0.78

0.73

0.75

                  0.52

            0.69

                                               0.45

Figure 8: Confirmatory Factor Analysis of the Observed Values

correlation matrix shown in Table 11. From Table 11, the following statistically significant
correlations can be observed:
• There exists a moderate positive correlation between Problem-Solving Ability and Com-
puter Programming Performance (r = 0.59, N = 133, p < 0.01, two-tailed)
• There exists a moderate positive correlation between Problem-Solving Ability and Com-
puter Programming Experience (r = 0.55 N = 133, p < 0.01, two-tailed)
• There exists a weak positive correlation between Problem-Solving Ability and Learning
Styles (deep learning) (r = 0.20 N = 133, p < 0.05, two-tailed)
• There exists a moderate positive correlation between Problem-Solving Ability and Self-
Efficacy (r = 0.43, N = 133, p < 0.01, two-tailed)
• There exists a moderate positive correlation between Programming Experience and Com-
puter Programming Performance (r = 0.51, N = 133, p < 0.01, two-tailed)
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• There exists a weak positive correlation between Programming Experience and Learning
Styles (deep learning) (r = 0.23 N = 133, p < 0.01, two-tailed)
• There exists a moderate positive correlation between Programming Experience and Self-
Efficacy (r = 0.51 N = 133, p < 0.01, two-tailed)
• There exists a weak positive correlation between Learning Styles (deep learning) and
Computer Programming Performance (r = 0.21 N = 133, p < 0.05, two-tailed)
• There exists a moderate positive correlation between Learning Styles (deep learning) and
Self-Efficacy (r = 0.42 N = 133, p < 0.01, two-tailed)
• There exists a moderate positive correlation between Self-Efficacy and Computer Pro-
gramming Performance (r = 0.57, N = 133, p < 0.01, two-tailed)
• There exists a moderate positive correlation between Motivation and Learning Styles
(deep learning) (r = 0.51, N = 133, p < 0.01, two-tailed)
• There exists a weak positive correlation between Motivation and Self-Efficacy (r = 0.20
N = 133, p < 0.05, two-tailed)
The results in Table 11 indicate that the bivariate correlations between Motivation and

Problem-Solving Ability; Motivation and Computer Programming Performance; Motivation
and Programming Experience are not significant.
The results from the current study are consistent with those observed in the systematic lit-

erature review by Medeiros et al. (2019), who found that in a majority of studies, there is evid-
ence of a positive relationship between programming experience and proficiency in computer
programming. The result of the correlation between Self-Efficacy and Computer Programming
Performance was supported in a study by I. Govender et al. (2014) where a strong link was
established between SE in Problem-Solving Ability and SE in Computer Programming. The
correlation between Problem-Solving Ability and Computer Programming Performance is sup-
ported by Lishinski et al. (2016), who indicated that Problem-Solving Ability is significantly
correlated with good academic performance on programming assignments. The correlation
between Problem-Solving Ability and Learning Styles is supported by Malik et al. (2019), who
argue that teaching problem-solving skills will inherently promote deep learning techniques
among students.

4.6.2 Multiple Regression Analysis (MRA)
The next step after bivariate correlations is to examine the combined effect of multiple inde-
pendent variables with the dependent variable (Swanson & Holton, 2005). The objective of
multiple regression is to provide the researcher with empirical evidence for making decisions
regarding the predictive capacity of the study’s conceptual model or for enabling an explan-
ation of the relationship between the independent and dependent variables in the study. In
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Table 11: Bivariate correlation of the study’s main constructs
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Problem-Solving N 133 133 133 133 133 133
Ability Pearson Correlation 1 0.588* 0.553* 0.202† 0.434* 0.002

Sigma (2-tailed) 0.000 0.000 0.020 0.000 0.986
Computer Programming Pearson Correlation 0.588* 1 0.506* 0.214† 0.572* 0.130
Performance (numeric) Sigma (2-tailed) 0.000 0.000 0.014 0.000 0.137
Programming Pearson Correlation 0.553* 0.506* 1 0.235* 0.512* 0.131
Experience Sigma (2-tailed) 0.000 0.000 0.006 0.000 0.134
Learning Style Pearson Correlation 0.202† 0.214† 0.235* 1 0.421* 0.505*
Deep Sigma (2-tailed) 0.020 0.014 0.006 0.000 0.000
Self-Efficacy Pearson Correlation 0.434* 0.572* 0.512* 0.421* 1 0.202†

Sigma (2-tailed) 0.000 0.000 0.000 0.000 0.020
Motivation Pearson Correlation 0.002 0.130 0.131 0.505* 0.202† 1

Sigma (2-tailed) 0.986 0.137 0.134 0.000 0.020

* correlation is significant at the 0.01 level (2-tailed)
† correlation is significant at the 0.05 level (2-tailed)

the context of the data for the current study, the multiple regression model is guided by Pham
et al. (2020). The first output from this analysis is the Model Summary output, shown in
Table 12. The analysis of variance (ANOVA) output is shown in Table 13.

Table 12: Model summary for MRA

Model R R2 Adjusted R2 Std error of estimate
1 0.697* 0.485 0.465 0.817

*Predictors: (Constant), MotivationCompositeMean, Problem-Solving
Ability, SECompositeMean, LS_Deep, ProgExperience

By analysing Tables 12 and 13, it can be established that the combined independent vari-
ables significantly predict Computer Programming Performance. The statistics that support
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Table 13: ANOVA* showing the significance of the model

Model Sum of squares df Mean2 F Significance
1 Regression 79.976 5 15.995 23.966 <0.001 †
Residual 84.761 127 0.667
Total 164.737 132

*Dependent Variable: Computer Programming Performance (numeric)
† Predictors: (Constant), MotivationCompositeMean, Problem-Solving Ability,
SECompositeMean, LS_Deep, ProgExperience

this conclusion are listed below:
• The F-statistic in Table 13 (F (5) = 23.96 (p < 0.01)) is an indicator of the significance of
the study’s multiple regression model.
• The F-statistic provides a validation indicator for the conclusion that the composite set of
independent variables explains 46.5% of the variance in the dependent variable (R = 0.7;
R2 = 0.485; adjusted R2 = 0.465; p < 0.01) as indicated in Table 12.
The final multiple regression output is to examine the coefficient values listed in Table 14,

where it can be seen from the Beta values that Problem-Solving Ability and SE are the twomain
predictors of Computer Programming Performance (p < 0.01). The findings on SE concurs with
the study conducted by I. Govender et al. (2014), where a strong link was established between
SE in problem solving and SE in computer programming. The current study extends the net-
work of influence regarding SE by showing a moderate, positive correlation between SE and
a deep learning style. The current study also shows a moderate positive correlation between
SE and Programming Experience, which is supported by Kolar et al. (2013). Problem-Solving
Ability shows a moderate positive correlation with Computer Programming Performance. This
outcome is confirmed in the report compiled by Medeiros et al. (2019), where 26 papers on
this topic were reviewed, as well as findings reported by Mahatanankoon and Wolf (2021),
and Lonka et al. (2004).
It should also be noted that, according to the data presented in Table 14, Programming

Experience, Learning Styles and Motivation are not significant predictors of Computer Pro-
gramming Performance. This finding was supported by Bennedsen et al. (2007), who found
that students with programming experience did not outperform students who did not have
programming computer programming experience as they relied heavily on their past know-
ledge and fell behind with the course material. The finding on deep Learning Styles being
a peripheral influence on computer programming achievement may be attributed to the fact
that students need to embrace both surface and deep learning styles because of the skill-based
nature of programming (Lindblom-Ylänne et al., 2019), as well as the finding that 50% of com-
puter programming students at higher education institutions tend to adopt a surface learning
style for introductory computer programming courses (Ranjeeth, 2011).
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Table 14: Coefficients of the Multiple Regression Model* showing the
significance of the model

Unstandardised Standardised
Coefficients Coefficients

Std.
Model B error Beta t Sig.
1 (constant) 0.974 0.513 1.897 0.060
ProgExperience 0.132 0.093 0.117 1.418 0.159
Problem-Solving Ability 0.022 0.004 0.382 4.837 0.000
SECompositeMean 0.577 0.128 0.366 4.524 0.000
LS_Deep -0.152 0.139 -0.088 -1.100 0.273
MotivationCompositeMean 0.148 0.131 0.084 1.130 0.261

*Dependent Variable: Computer Programming Performance (numeric)

The construct of Motivation played a minimal role in predicting Computer Programming
Performance. This outcome is contrary to the results reported by Bergin and Reilly (2005),
who found that IM and EM were strongly aligned to Computer Programming Performance.
The finding on Motivation not being a significant predictor of Computer Programming Per-
formance can be attributed to the fact that Motivation can be negatively affected by the need
to do challenging programming exercises and to expend a great deal of effort in grasping
programming concepts (Durak et al., 2019).

5 CONCLUSION AND RECOMMENDATIONS

This study was aimed at addressing the issue of students struggling to obtain proficiency in
the domain of computer programming. There have been numerous studies previously that
have studied this phenomenon and knowledge around this topic has grown substantially. The
problem of poor performance in computer programming does, however, continue to exist. The
current study was grounded in the previous efforts to find a solution to this phenomenon. The
difference, however, is that this study adopted a multidimensional approach by integrating
five significant constructs into a single conceptual model, examining the role of each con-
struct in relation to academic performance in computer programming. This study also showed
the relative importance of each factor in contributing towards an improvement in students’
performance in computer programming.
The study’s findings relating to the main research question, “What are the factors that

influence proficiency in computer programming at the higher education level?”, are as follows:
Programming Experience and Computer Programming The bivariate correlation shows a
moderate but significant, positive correlation with Computer Programming Performance.

https://doi.org/10.18489/sacj.v36i1.18819

https://doi.org/10.18489/sacj.v36i1.18819


Ranjeeth, L., and Padayachee, I. : Factors that influence computer programming proficiency in higher… 65

This outcome suggests that Programming Experience does influence academic performance
in computer programming. The knowledge obtained from the current study regarding
Programming Experience is crucial because the implication is that, when Programming
Experience is considered as part of a broader understanding of the factors that influence
Computer Programming Performance, its significance is minimal as indicated in the Mul-
tiple Regression Model in Table 14.

Problem-Solving Ability and Computer Programming The bivariate correlational analysis
shows that Problem-Solving Ability has a moderate, significant positive correlation with
Computer Programming Performance. The multiple regression analysis indicates that Pro-
blem-Solving Ability is a main predictor of Computer Programming Performance. The
implication from these results suggest that universities need to invest more time at 1st-year
level with a focus on logical reasoning and algorithmic thinking so that students can obtain
foundation knowledge on computer programming semantic structures to enhance problem
solving. This observation has significant implications for students who have not had prior
experience in computer programming because a focus on algorithmic thinking would equip
them with the cognitive structures required to obtain a deep understanding of computer
programming logic.

Self-Efficacy (SE) and Computer Programming The bivariate correlational analysis shows
there is a moderate but significant, positive correlation between SE and Computer Program-
ming Performance. The multiple regression analysis indicates that SE is a main predictor
of Computer Programming Performance. The current study also confirms a moderate, sig-
nificant positive correlation between SE and Programming Experience. The current study
extends the network of influence regarding SE by observing that there is a moderate, sig-
nificant positive correlation between SE and a deep learning style. These observations
are significant from a pedagogical perspective because educators should make a concerted
effort to enhance and enable high levels of SE amongst students in their programming
courses.

Motivation and Computer Programming The construct of Motivation played a minimal role
in predicting Computer Programming Performance. While this construct had a weak but
positive correlation with SE and a moderate positive correlation with Learning Styles, it
did not display a significant relationship with Problem-Solving Ability, Programming Ex-
perience or Computer Programming Performance.

Learning styles and Computer Programming The study shows that a weak positive cor-
relation exists between Problem-Solving Ability and Learning Styles (deep learning) but
contributes to Computer Programming Performance only peripherally.
The Model Summary output and the analysis of variance (ANOVA) output in Tables 12

and 13 demonstrated that the combined independent variables (Motivation, Problem-Solving
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Ability, Self-Efficacy, Programming Experience and Learning Styles) significantly predict Com-
puter Programming Performance.
The main limitation of the study is the threat to external validity because a larger, more

expansive sample would have created an opportunity for greater generalisation of the study’s
results. The delimitation of confining the study to IS&T students was necessitated by the re-
searcher’s concerns when it came to data collection because, at the commencement of the
study, the COVID-19 pandemic prevented free and open communication with potential re-
spondents. The researcher’s field study was confined to IS&T platforms that were made avail-
able online. Another limitation of the study was the potential breach of internal validity
because the measurement of student programming performance was done through estimates
provided by the study respondents. This potential weakness in the study was, however, mitig-
ated by the inclusion of problem-solving tasks in the study’s questionnaire. The strong positive
correlation between the scores obtained in the problem- solving tasks and the respondents’ es-
timation of their performance in computer programming assessment enhanced the reliability
of these variables.
The findings contribute to the body of knowledge in computer programming pedagogy,

which could lead to improved student performance in assessment tasks, as well as to validat-
ing the adopted conceptual model. The findings emphasise the role played by Self-Efficacy as
a significant predictor of Computer Programming Performance as well as its significant, pos-
itive correlations with the four major factors, namely Problem-Solving Ability, Programming
Experience, Learning Styles (deep learning) and Motivation. The finding on Problem-Solving
Ability as a significant predictor of Computer Programming Performance contributes to the
wider argument on the effects of problem solving on computer programming performance and
vice versa and its potential to improve cognitive skills such as creative thinking, mathematical
skills, and reasoning, thereby promoting computational thinking skills in education and soci-
ety. The findings of the adopted conceptual model demonstrate the importance of the many
factors that have direct or indirect effects on student performance in computer programming
courses, including Problem-Solving Ability, Self-Efficacy, Programming Experience, Motiva-
tion and Learning Styles. The findings of the study have implications for educational practice
as the personalized learning instructional approach and multiple learning opportunities can
be used to improve individual student performance in computer programming.
A further outcome of the study is the development and validation of a conceptual model

to predict Computer Programming Performance. This model has been subjected to validity
testing in the form of confirmatory factor analysis and multiple regression analysis. It is re-
commended that future studies explore the role that Motivation and Learning Styles play when
students learn programming in an online distance learning environment as opposed to a face-
to-face setting or a hybrid learning environment.
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A STATISTICAL TESTS

Table A1: One-sampled Wilcoxon signed rank test for Motivation

1-sample t-test 1-sample
Test value=3 Wilcoxon signed rank test
Significance

1-sided 2-sided Mean Decision
Motivation t df p p difference Sig.*† Null hypothesis
IM1: I prefer course material that really chal-
lenges me so I can learn new things

7.508 132 0.000 0.000 0.669 0.000 Reject

IM2: When I don’t understand something right
away I try to figure it out by myself

11.181 132 0.000 0.000 0.872 0.000 Reject

IM3: I prefer course material that arouses my
curiosity even if it is difficult to learn

8.852 132 0.000 0.000 0.767 0.000 Reject

IM4: Getting good marks for programming brings
me a sense of personal satisfaction

15.681 132 0.000 0.000 1.226 0.000 Reject

IM5: I engage with new technology so that I have
a sense of control over the technology

9.650 132 0.000 0.000 0.842 0.000 Reject

EM1: I want to do well in my programming
modules because it is important to show my
ability to my family, friends and lecturers

6.808 132 0.000 0.000 0.647 0.000 Reject

EM2: I engage with new technology because that
is what society expects of me

0.142 132 0.444 0.888 0.015 0.880 Retain

EM3: I make an effort to master computer pro-
gramming so that I can “fit in” with other stu-
dents in my group/class

1.865 132 0.032 0.064 0.195 0.107 Retain

*The significance level is .050
† Asymptotic significance is displayed
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Table A2: One-sampled Wilcoxon signed rank test for Learning Styles

1-sample t-test 1-sample
Test value=3 Wilcoxon signed rank test
Significance

1-sided 2-sided Mean Decision
Learning Styles t df p p difference Sig.*† Null hypothesis
LS1: I find most new topics interesting and will
often spend extra time trying to understand how
they work

11.687 132 0.000 0.000 0.789 0.000 Reject

LS2: I find it helpful to study topics in depth
rather than trying to remember important facts
for tests

10.900 132 0.000 0.000 0.789 0.000 Reject

LS3: I test myself on important topics until I
understand them completely

9.848 132 0.000 0.000 0.684 0.000 Reject

LS4: I tend to study best by using memorisation
techniques

6.101 132 0.000 0.000 0.481 0.000 Reject

LS5: I find the best way to pass tests is trying to
learn the answers to likely questions

3.337 132 0.001 0.001 0.293 0.002 Reject

LS6: I prefer to ensure that I pass a course even
though my understanding of concepts may not be
very good

5.523 132 0.000 0.000 0.474 0.000 Reject

*The significance level is .050
† Asymptotic significance is displayed
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Table A3: Significance testing for Self-Efficacy

1-sample t-test 1-sample
Test value=3 Wilcoxon signed rank test
Significance

1-sided 2-sided Mean Decision
Self-efficacy t df p p difference Sig.*† Null hypothesis
SE1: I am confident of my ability to develop
suitable strategy for a given programming task in
a short time

4.513 132 0.000 0.000 0.406 0.000 Reject

SE2: I am able to construct programming code
that is logically correct

6.613 132 0.000 0.000 0.549 0.000 Reject

SE3: I have the capacity to easily identify errors
in my programming code

5.480 132 0.000 0.000 0.474 0.000 Reject

SE4: I am able to mentally trace through the
execution of a long, complex program

1.061 132 0.145 0.291 0.090 0.294 Retain

SE5: I could organize and design my program in
a modular/procedural manner

4.141 132 0.000 0.000 0.368 0.000 Reject

SE6: I have a good understanding of the object-
oriented paradigm for programming

4.322 132 0.000 0.000 0.391 0.000 Reject

SE7: I could rewrite lengthy and confusing por-
tions of code to be more readable and clearer

1.029 132 0.153 0.305 0.090 0.278 Retain

SE8: I am confident of my ability to identify
the objects in the problem domain and declare,
define, and use them

3.800 132 0.000 0.000 0.323 0.001 Reject

SE9: I am able to write computer programming
code to sort out a given set of numbers into as-
cending/descending order

8.190 132 0.000 0.000 0.699 0.000 Reject

SE10: I feel that I am better at programming
when I get the help of someone else

-7.832 132 0.000 0.000 -0.729 0.000 Reject

SE11: I feel more comfortable to complete a
programming problem if someone showed me
how to solve the problem first

-8.336 132 0.000 0.000 -0.752 0.000 Reject

SE12: I could manage my time efficiently if I had
a pressing deadline on a programming project

5.741 132 0.000 0.000 0.511 0.000 Reject

*The significance level is .050
† Asymptotic significance is displayed
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