
SACJ 36(2) December 2024
Research Article

Predicting the performance of ORB-SLAM3
on embedded platforms
Jacques Mattheea , Kenneth R. Urena , George van Schoorb , Corné van Daalenc

a School of Electrical, Electronic and Computer Engineering, North-West University
b Unit for Energy and Technology Systems, North-West University
c Department of Electrical and Electronic Engineering, Stellenbosch University

ABSTRACT
Simultaneous Localization and Mapping (SLAM) is a crucial component to the push towards full autonomy of
robotic systems, yet it is computationally expensive and can rarely achieve real-time execution speeds on embed-
ded platforms. Therefore, a need exists to evaluate the performance of SLAM algorithms in practical embedded
environments – this paper addresses this need by creating prediction models to estimate the performance that
ORB-SLAM3 can achieve on embedded platforms. The paper uses three embedded platforms: Nvidia Jetson TX2,
Raspberry Pi 3B+ and the Raspberry Pi 4B, to generate a dataset that is used in training and testing performance
prediction models. The process of profiling ORB-SLAM3 aids in the selection of inputs to the prediction model
as well as benchmarking the embedded platforms’ performances by using PassMark. The EuRoC micro aerial
vehicle (MAV) dataset is used to generate the average tracking time that the embedded platforms can achieve
when executing ORB-SLAM3, which is the target of the prediction model. The best-performing model has the fol-
lowing results 2.84%, 3.93%, and 0.95 for MAE, RMSE and R2 score respectively. The results show the feasibility
of predicting the performance that SLAM applications can achieve on embedded platforms.
Keywords Monocular-Inertial SLAM, ORB-SLAM3, Embedded platform, Nvidia Jetson TX2, Raspberry Pi
Categories • Computer system organization ∼ Real-time systems ∼ Embedded and cyber-physical sytems
Email
Jacques Matthee – j.matthee97@gmail.com
Kenneth R. Uren – kenny.uren@nwu.ac.za (CORRESPONDING)
George van Schoor – george.vanschoor@nwu.ac.za
Corné van Daalen – cvdaalen@sun.ac.za

Article history
Received: 2 November 2023
Accepted: 12 September 2024
Online: 11 December 2024

1 INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is the process where a robot or vehicle con-
currently creates a representation of its environment while determining its position within the
environment. SLAM presents two primary challenges: To create an accurate map of the envir-
onment, the robot needs to have an accurate localisation; and to accurately localise a robot in
an environment, an accurate representation of the environment is needed (Kumiawan et al.,
Matthee, J., Uren, K.R., Van Schoor, G. and Van Daalen, C. (2024). Predicting the performance of ORB-SLAM3
on embedded platforms. South African Computer Journal 36(2), 84–102. https://doi.org/10.18489/sacj.v36i2.
20099

Copyright the author(s); published under a Creative Commons NonCommercial 4.0 License
SACJ is a publication of SAICSIT. ISSN 1015-7999 (print) ISSN 2313-7835 (online)

https://protect.checkpoint.com/v2/___https://orcid.org/0000-0002-2139-0648___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2Ojk0Y2U6NDJhYWNmNjhmN2JlYjhhZDNjMDFmMTk3YjQ1ZTk0ZmE2Mzg0NDAyMjg3MDVhMTgxYmZkOWI0MmY4ZDMxY2ZkOTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://orcid.org/0000-0002-0561-0735___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjJiN2U6MjhiYzYxZWM5ZGY1Y2VmYTA1Y2ZlZjBjNDM3ODg3NWQzNmNjNDhhMTY0NTdiYjNhM2RjZDBlNjU4ZjU0MjFhODpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://orcid.org/0000-0001-5702-1812___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmMzOTk6ODA4YzEwMTU0Y2U5ZDJlMTI4Zjk3ODM5ODJjMmJkYTE5Zjg4YjIxNTk5Y2E0Yzc1ZGNiZTZlY2NiMTRhODdlMTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://orcid.org/0000-0002-9849-586X___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjNkNmE6OGUzZGE2NmRkMDdiZTdkYmFmZjA4YTZiZDUxNTIxY2U2N2NkOWEyNGYzNTJkMmVjMjBjYjA0NDQzMTkwYjZjYzpwOlQ6Tg
mailto:j.matthee97@gmail.com
mailto:kenny.uren@nwu.ac.za
mailto:george.vanschoor@nwu.ac.za
mailto:cvdaalen@sun.ac.za
https://protect.checkpoint.com/v2/___https://www.sacj.org.za___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjlkYjg6NmU3NGJjMmU1NDQ2N2ZjMGVjNjc1MTUwOGE1ZjdmYmM4OGVlYTllMjRmYjQ3ZDg5ZjgyMTI5N2JkMzNhMzA1YzpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.20099___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmFiZDM6OTBiMjJlOTA2MTE3OTE2ZDI0ODNjZTM2YmU1ZmNjZjA2MjIwNmNiZDdhZDZhMTUzZDQwMWRiOTFhYzg0MTQwZTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.20099___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmFiZDM6OTBiMjJlOTA2MTE3OTE2ZDI0ODNjZTM2YmU1ZmNjZjA2MjIwNmNiZDdhZDZhMTUzZDQwMWRiOTFhYzg0MTQwZTpwOlQ6Tg
https://protect.checkpoint.com/v2/___http://creativecommons.org/licenses/by-nc/4.0/___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmQ1ZTE6ODE0OWY2MmM5MWY3ZDg3Zjk2YjAwNGMxYjJhZjhkOTc3MzA4OTk0ZjZjM2EzZGY5MmZmNDk4NDU2MGNlNDRkMjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://www.sacj.org.za___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjlkYjg6NmU3NGJjMmU1NDQ2N2ZjMGVjNjc1MTUwOGE1ZjdmYmM4OGVlYTllMjRmYjQ3ZDg5ZjgyMTI5N2JkMzNhMzA1YzpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://www.saicsit.org/___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmQzM2M6YzEyZTE2ZDM0MDk1NGE3NTU3ZDJhM2E4ZDVhZmU5ODhlY2VlMGVmMzIxMzMzZGM3YjM5Yjc2NWQ2NGZjOTJiYTpwOlQ6Tg


Matthee, J., Uren, K.R., Van Schoor, G. and Van Daalen, C. : Predicting the performance of ORB-… 85

2016). SLAM implementations consist of four major algorithmic components: landmark ex-
traction, data association, state estimation, and state and landmark update. Each component
has multiple solutions, depending on the environment, sensors used, and the platform it is
implemented on; thus, SLAM is a diverse topic which is often associated with high computa-
tional expense. There are algorithms (Oriented FAST and Rotated BRIEF (ORB) (Rublee et al.,
2011), Scale-Invariant Feature Transform (SIFT) (Lowe, 2004), Speeded-up Robust Features
(SURF) (Bay et al., 2008)) that extract features from the environment to be used with other
algorithms, such as pose (position and orientation) graph optimisation or bundle adjustment
(BA) to estimate the pose and generate a map of the environment.

Eyvazpour et al. (2022) and Barros et al. (2022) illustrate the extensive variety of ap-
proaches to SLAM, reflecting the complexity and diversity of solutions in the field. Barros
et al. (2022) highlight that the main challenges with current SLAM techniques include al-
gorithmic robustness, computational resource usage, and the ability to understand real-world
dynamic environments. In contrast, Eyvazpour et al. (2022) focus on the performance differ-
ences among various SLAM techniques across embedded platforms, emphasising that selecting
an appropriate hardware platform for SLAM implementation requires careful consideration of
factors such as cost, power consumption, computational power, and the specific application.

There is a practical need for SLAM to be implemented on mobile platforms for real-world
scenarios such as search-and-rescue operations, military reconnaissance and attack, and auto-
matic exploration of areas. All these endeavours can be autonomously performed by SLAM.
The building blocks needed to implement SLAM are: sensors, actuators, processors, and al-
gorithms. The processors and algorithms control the flow of information between the sensors
and the actuators. Different sensors can be used in SLAM implementations such as: sonar
(Kleeman, 2003), LiDAR (Kohlbrecher et al., 2011), and various types of camera configura-
tions. The type of robotic platform that is used highly influences the choice of sensors. The
most significant contributors in deciding what system and sensors to use in SLAM are the
cost and the computational load of the required calculations. Sensors such as LiDAR provide
accurate results, but an inexpensive camera can achieve similar results depending on the en-
vironment.

Visual SLAM (VSLAM) has gained popularity over the past years as it can provide a very
detailed representation of the environment in a 3D space, with the disadvantage of being more
computationally expensive due to a large amount of information within an image (Chen et al.,
2018). However, due to the high level of detail, VSLAM can be used for autonomous navigation
and mapping applications. VSLAM can be divided into three categories: monocular, stereo,
and RGB-d, according to the camera types used (Taketomi et al., 2017). Monocular SLAM uses
a single camera as input, thus being the least computationally and physically expensive VSLAM
method. However, monocular SLAM has the disadvantage of the scale ambiguity problem, as
scale cannot be determined from a single camera. Therefore, VSLAM has been expanded into
visual-inertial SLAM (VISLAM), where visual and inertial data are used to obtain more stable
estimation results or, in the case of monocular SLAM, to remove the scale ambiguity problem
(Taketomi et al., 2017).

https://doi.org/10.18489/sacj.v36i2.20099

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.20099___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjdmY2Q6YmQxOTkzZDFjNjRhYzFjNmQzOGI4Y2JlNjhkZmFmZmMwNGE5OGUyZmI1ZGEyZjg0NjcxNGQ1ZGY0ZjRjMWVmNjpwOlQ6Tg


Matthee, J., Uren, K.R., Van Schoor, G. and Van Daalen, C. : Predicting the performance of ORB-… 86

Abouzahir et al. (2017) showed that there is a large performance difference when executing
certain SLAM algorithms on an embedded platform versus a high-end desktop computer. The
execution performance achieved by the desktop is 1.8, 6.4 and 2.2 times faster for FastSLAM2.0
(Montemerlo et al., 2003), ORBSLAM (Mur-Artal et al., 2015) and RatSLAM (Milford et al.,
2004) respectively. Nardi et al. (2015) created SLAMBench 1.0, which provided a portable
but untuned KinectFusion (Newcombe et al., 2011) implementation of SLAM in C++ OpenMP,
Cuda, and OpenCL. From a performance comparison of KinectFusion on a high-end computer
and embedded devices, it is found that the high-end machine can achieve a frame rate of
135 frames per second (FPS), while the best performing embedded device is the Nvidia TK1
with a frame rate of 22 FPS. The TK1’s performance is considerably lower than that of the
high-end device, but the authors asserted that this performance could almost be classified
as real-time. Peng et al. (2020) evaluated two popular visual SLAM techniques, ORBSLAM2
(Mur-Artal & Tardós, 2017) and OpenVSLAM (Sumikura et al., 2019), on the 3 Nvidia Jetson
platforms. It is found that the Nvidia Jetson TX2 could run both visual SLAM algorithms within
their real-time constraints. An alternative ORB-SLAM2 algorithm that is modified to use the
power of a GPU is also investigated. The GPU-accelerated ORB-SLAM2 algorithm increased
the performance by 10 FPS while consuming less power than the original algorithm. This
shows that although satisfactory results can be obtained using SLAM on high-end machines,
there is still a performance gap when using them on embedded devices due to their hardware
constraints.

There are three notable benchmarking tools for SLAM: SLAMHive (Liu et al., 2024), GSLAM
(Zhao et al., 2019), and SLAMBench 3.0 (Bujanca et al., 2019). These software frameworks
enable researchers and developers to evaluate a wide range of SLAM techniques across various
datasets. They focus on critical performance metrics such as accuracy and speed, providing a
consistent basis for comparing the robustness and efficiency of different SLAM algorithms in
diverse environments. However, these benchmarking tools are not capable of estimating the
performance of SLAM algorithms on specific hardware platforms.

This paper makes a two-fold contribution: Profiling ORB-SLAM3 on the Nvidia Jetson
TX2 to identify the execution bottlenecks, and creating a model capable of estimating the
performance that ORB-SLAM3 can achieve on embedded platforms.

The paper is organised as follows: Section 2 details the hardware and software used within
the study, along with the initial implementation. Section 3 profiles the software to identify its
bottleneck impact on the hardware. Section 4 discusses the experimental design used to create
a model that can estimate the performance of ORB-SLAM3 on embedded platforms. Section 5
provides and discusses the results of the modelling process. Section 6 concludes the study.

https://doi.org/10.18489/sacj.v36i2.20099

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.20099___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmMyOGI6MzgxZDRlMzlmODM3ZjY1NTYzNjk4ZjRiY2UzYTI5ZTNiNmEzNWVjMTkwZTU1NTA0MjUzODczMzc1NTkyN2E4NzpwOlQ6Tg


Matthee, J., Uren, K.R., Van Schoor, G. and Van Daalen, C. : Predicting the performance of ORB-… 87

2 HARDWARE AND SOFTWARE IMPLEMENTATION

2.1 Hardware - Embedded platforms
Three embedded platforms were selected for experimentation: the Nvidia Jetson TX2, Rasp-
berry Pi 3B+, and Raspberry Pi 4B. The Jetson TX2 features a heterogeneous multi-processing
environment with two CPU clusters: a dual-core Nvidia Denver 2, optimised for single-threa-
ded performance, and a quad-core ARM Cortex-A57, suited for multi-threaded tasks. In con-
trast, the Raspberry Pi 3B+ and 4B are equipped with quad-core ARM Cortex-A53 and Cortex-
A72 CPUs, respectively.

Table 1 compares these CPUs. The Denver 2, with its superscalar width of seven in Dy-
namic Code Optimization (DCO) mode, offers the highest potential instruction execution per
cycle, surpassing the Cortex-A53, A57, and A72. While the A72 and A57 are “out-of-order”
processors that handle code dependencies more effectively, the “in-order” Denver 2 addresses
these challenges through DCO.

Additionally, the Denver 2’s larger L1 cache and higher associativity reduce miss rates but
increase access times, whereas the Cortex-A53 experiences more conflict misses with quicker
access times. Overall, the Denver 2 provides a balance of lower miss rates with a higher miss
penalty.

The hardware listed in Table 1 was selected for this study due to their status as some of
the most powerful and widely used embedded platforms available today. Each platform fea-
tures multi-core CPUs, facilitating parallel processing. Additionally, the Jetson TX2 includes
a robust GPU that can be leveraged for enhanced performance. ORB-SLAM3 was executed on
all three platforms, and performance metrics captured from which the performance of ORB-
SLAM3 on similar embedded systems could be estimated.

Table 1: Comparison between embedded platform CPUs

Cortex-A57 Denver 2 Cortex-A53 Cortex-A72
ISA ARMv8 ARMv8 ARMv8 ARMv8
Superscalar 3 7 with DCO 2 3

(2 without)
Execution order Out-of-order In-order In-order Out-of-order
L1 instruction cache
(set-associative)

48 KB 3-way 128 KB 4-way 2 KB 2-way 48 KB 3-way

L1 data cache
(set-associative)

32 KB 2-way 64 KB 4-way 16 KB 4-way 32 KB 2-way

L2 shared cache
(set-associative)

2 MB 16-way 2 MB 16-way 512 KB 16-way 512 KB 16-way

Operating frequency 2 GHz 2 GHz 1.2 GHz 1.5 GHz

https://doi.org/10.18489/sacj.v36i2.20099

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.20099___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjFhYjM6ODM5YzYwYzk1MDU2ZDBlN2UwYzFmZWIwYTI4NjE4MmU2Mjc2NDViMDU3NGU4MDc1NzY0NGQ2MmQ1NTZjMjVmMzpwOlQ6Tg


Matthee, J., Uren, K.R., Van Schoor, G. and Van Daalen, C. : Predicting the performance of ORB-… 88

2.2 Software - ORB-SLAM3
ORB-SLAM is a highly robust feature-based monocular SLAM system that can operate in real-
time in small and large indoor and outdoor environments (Mur-Artal et al., 2015). It also
includes loop closing, relocalisation, and complete automatic initialisation. ORB-SLAM uses
the same features for all SLAM tasks such as tracking, mapping, relocalisation, and loop closing.
The point and keyframes of ORB-SLAM are selected using survival of the fittest, leading to
reconstruction with excellent robustness and compact map generation that only grows if the
scene changes. ORB-SLAM uses ORB features as a feature extractor, which allows for real-
time performance while providing good invariance to changes in viewpoints and illumination
differences (Rublee et al., 2011).

ORB-SLAM is written to use three threads that run in parallel: tracking, local mapping, and
loop closing. The tracking thread is responsible for localising the camera with every frame
and deciding when to insert a new keyframe. The local mapping thread is responsible for
processing any new keyframes and performs local BA to achieve optimal reconstruction of the
camera pose. The loop closing thread searches for loops with every new keyframe.

ORB-SLAM2 (Mur-Artal & Tardós, 2017) was released two years after ORB-SLAM, and
expanded functionality beyond monocular SLAM into stereo and RGB-D SLAM. Another two
years later, ORB-SLAM3 (Campos et al., 2021) was released, which is the first system to per-
form visual, visual-inertial, and multi-map SLAM with monocular, stereo, and RGB-D cameras,
using the pin-hole and fisheye lens models. The fact that ORB-SLAM3 allows the user to use
different SLAM types, with different sensor input types and various camera models, makes it
an ideal SLAM algorithm to investigate. ORB-SLAM3 is a state-of-the-art algorithm extensively
used in the research community for visual SLAM tasks (Abouzahir et al., 2017; Barros et al.,
2022; Eyvazpour et al., 2022; Peng et al., 2020; Ragot et al., 2019). It is known for its robust
performance and versatility across various applications. ORB-SLAM3 leverages ORB (Oriented
FAST and Rotated BRIEF) features to deliver accurate and efficient SLAM capabilities, making
it a popular choice for research and practical implementations in the field.

The primary objective of this study is to predict the performance of ORB-SLAM3 on an
embedded platform, with a specific focus on execution time. In mission-critical applications
such as search and rescue, reconnaissance, and attack missions, SLAM applications are only
valuable if they can operate in real time.

The way ORB-SLAM3 is written, the tracking thread is the main thread of execution, and
if the main thread is stalled or slow, the overall performance of ORB-SLAM3 will be slow. The
important performance metric, therefore, is the tracking thread execution time. The objective
of the model created in this study is therefore to predict the mean tracking time of ORB-SLAM3
on an embedded platform.

2.3 Implementation
Ubuntu 18.04 was installed on all embedded platforms, along with Docker (Docker, 2018) and
Passmark (PassMark, 2024). Passmark was utilised to benchmark CPU performance, provid-

https://doi.org/10.18489/sacj.v36i2.20099

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.20099___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjBjMmY6ODFjNTMxNjQ2NzQ4Mzg1Y2Q3YjUzY2IxMDlhNjkxOTZmY2IzYWVjYmFlMWM0NTFiNjZiNDQzNzlmYTViMWY2YjpwOlQ6Tg


Matthee, J., Uren, K.R., Van Schoor, G. and Van Daalen, C. : Predicting the performance of ORB-… 89

ing input for the estimation models. Docker enabled the execution of a containerised version
of ORB-SLAM3 on these platforms. The results from Passmark benchmarking and the contain-
erised ORB-SLAM3 were used to develop a performance estimation model. Figure 1 illustrates
the software setup on the embedded platforms and how the software was used to generate
training and testing data for the performance estimation model.

Figure 1: ORB-SLAM3 embedded implementation illustration

3 PERFORMANCE PROFILING

3.1 ORB-SLAM3 profiling
ARM MAP (ARM, 2024b), which was employed in this study, can expose performance prob-
lems and bottlenecks by measuring the computation over the time of an application, showing
the thread activity, and providing access to the CPU performance measuring unit (PMU) to
count the performance events. Due to licensing constraints, profiling was only done on the
ARM Cortex A57 CPU of the Nvidia Jetson TX2.

Profiling aims to identify bottlenecks in ORB-SLAM3 on the Nvidia Jetson TX2 and to de-
termine program characteristics such as total instructions executed, instruction mix, and cache
performance. The total instructions executed show how many instructions were completed
during program execution. Instructions are commonly divided into four groups: arithmetic,
load, store, and branch. The combination of instruction types is called instruction mix and
indicates what type of instructions are dominant in the program. Cache performance indicates
how many times the cache was accessed and what the cache miss ratio was. These program
characteristics can be used to aid in the selection of inputs into the prediction model.

Since the ARM A57 CPU has only 6 hardware counters available, the events were measured
in four different sets as listed in Table 2 during four separate executions of ORB-SLAM3. Each
group was linked to a specific instruction type, such as arithmetic instructions, load and store

https://doi.org/10.18489/sacj.v36i2.20099

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.20099___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjE3MTY6NjM1OGRjYzYxM2M2NjA5ZTFhYWJkZDE1YzhlZmViZGI0NDI0OGIzZDkyMTQyMWU2N2Y2Y2UwMGVkMzc4N2EwNzpwOlQ6Tg


Matthee, J., Uren, K.R., Van Schoor, G. and Van Daalen, C. : Predicting the performance of ORB-… 90

instructions, cache performance, and branch performance for sets 1–4 listed in Table 2. For
the event description, please refer to ARM (2024a).

Table 2: The set of A57 counted performance events

Set Performance events

1 CPU-Cycles, Instructions, ASE_SPEC, DP_SPEC, VFP_SPEC
2 LD_SPEC, ST_SPEC, Cache-misses, MEM_ACCESS_RD, MEM_ACCESS_WR
3 L1D_CACHE_RD, L1_CACHE_WR, L2D_CACHE_RD, L2D_CACHE_WR,

Cache-misses, Cache-references
4 Branch-misses, BR_IMMED_SPEC, BR_INDIRECT_SPEC, BR_RETURN_SPEC

Using ARMMAP to profile ORB-SLAM3, it was identified that the CPU is constantly working
and not waiting for any other input, indicating that ORB-SLAM3 is compute intensive on the
Nvidia Jetson TX2.

By analysing the function call stack in Figure 2, the FAST function of the OpenCV library
was found to be the most time-consuming. This function is called within ORB-SLAM3’s Com-
puteKeypointsOctTree function, which forms part of the ORBextractorOperator.

Figure 2: Snippet of ARM Map output of the ORB-SLAM3 function call stack

Figure 3(a) shows that ORB-SLAM3 is dominated by arithmetic logic unit (ALU) instruc-
tions, followed by load instructions. Figure 3(b) shows that the ALU instructions were domin-
ated by data processing and integer math instructions with relatively few SIMD instructions,
which indicates that ORB-SLAM3 was poorly optimised to use single instruction multiple data
SIMD instructions on the Nvidia Jetson TX2. The high amount of load instructions was due to
the sequence images loaded into the cache hierarchy, for processing by the CPU.

No modifications were made to the ORB-SLAM3 source code to enhance efficiency. How-
ever, there was potential for performance improvement on the Nvidia Jetson TX2 bymodifying
the source code to utilise the GPU’s CUDA cores.

https://doi.org/10.18489/sacj.v36i2.20099

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.20099___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjBlYTk6NWU2MTRkMDVjZWMzOTkzNGI1MTY2YTcyY2QwNmYzZjNmNGY2YjhiMDQxZTA1ZGU0ZjRlZmU1MWM0N2MwYTQ1ZTpwOlQ6Tg


Matthee, J., Uren, K.R., Van Schoor, G. and Van Daalen, C. : Predicting the performance of ORB-… 91

0 100%

(b) ALU mix

(a) Instruction mix

85.8% 8.1% 6.1%

47.9% 27.8% 15.7% 8.6%

Figure 3: Initial ORB-SLAM3 profiling results

4 EXPERIMENTAL DESIGN

The previous sections described the hardware characteristics of the embedded platforms used
in the study and how software such as ORB-SLAM3 executed on them. This section describes
the creation of a prediction model to estimate the performance of ORB-SLAM3 on embedded
platforms.

4.1 Model inputs and outputs
Since ORB-SLAM3 is CPU-Bounded on embedded platforms, the CPU characteristics were used
as inputs to the model. One method to characterise a CPU is using a benchmark program such
as PassMark which is a collection of CPU stress tests that executes on the CPU to determine its
performance. Table 3 shows the categories that are tested by the PassMark benchmark. The
CPU mark is an overall score that combines all the other categories. The rest of the categories
are individual benchmark test scores where specific programs are executed to test the CPU
performance in a specific category. All tests were done with multi-threading except for the
CPU single-threaded test. These benchmark scores were investigated and reduced to be used
as inputs to the prediction model.

Table 3: PassMark benchmark elements

PassMark benchmark elements
CPU Integer FP Prime Sorting Encrypt Comp Single Physics NEON
Mark Math Math Numbers Threaded

Since the FAST algorithm forms part of the tracking thread and is the bottleneck of ORB-
SLAM3, the maximum performance that ORB-SLAM3 can achieve on an embedded platform
is determined by the speed at which the platform can execute the tracking thread. Thus the
prediction model predicts the average tracking time that ORB-SLAM3 can achieve on a given
platform.

https://doi.org/10.18489/sacj.v36i2.20099

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.20099___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjVmMzI6YTEyNzc3M2JhMTcxNjkwZGVjNGViY2UyNzIwMTg4NTAzZjI2ZTQzMDJmYTBhY2M1MTE5MzFjMDQ3ZjFlYWQzODpwOlQ6Tg


Matthee, J., Uren, K.R., Van Schoor, G. and Van Daalen, C. : Predicting the performance of ORB-… 92

4.2 Dataset generation for modelling
With the inputs and output defined, data had to be gathered to train and test the model. The
model output was generated by executing the 11 EuRoC MAV sequences on the embedded
platforms. The study had access to three embedded platforms with a total of four different
CPUs: the Nvidia Jetson TX2 (Denver 2 and A57 CPUs), the Raspberry Pi 3B+ (A53) and
the Raspberry Pi 4B (A72). If all 11 sequences were executed on the four different CPUs, the
dataset would only contain 44 data pairs, which could limit the prediction model’s perform-
ance. Thus the number of available CPUs was artificially increased by setting up different CPU
configurations to generate enough data pairs for the model creation.

Generating the different CPU configurations was achieved through over-clocking and un-
der-clocking the different CPU cores and limiting the number of available CPU cores.

Table 4 shows the 39 CPU configurations that were used to generate the prediction model
dataset, by varying the number of CPU cores and CPU core frequencies.

Table 4: List of CPU configurations to be used to generate dataset

CPU Number of cores Core frequencies (GHz) Number of CPU configs
A57 2, 4 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 12
A72 2, 4 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 12
A53 4 1.0, 1.2, 1.3 3
Denver 2 2 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 6
TX2 6 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 6

By executing the 11 EuRoC MAV sequences on the 39 available CPU configurations, the
data set will have 429 data pairs. The prediction model training data comprises 15 parameters
as described in Table 5. It constitutes the CPU name, clock frequency, PassMark benchmarking
results, the executed sequence as 14 model inputs and the average tracking time that the
specific CPU configuration achieved while executing ORB-SLAM3 as model output.

Table 5: Prediction model training data description

Input Parameter Description Input Parameter Description
CPU CPU Name Cores Amount of CPU cores
Frequency CPU clock frequency Mark PassMark CPU score
Int PassMark integer score Float PassMark float score
Prime PassMark prime score Sort PassMark sort score
Encrypt PassMark Encrypt score Comp PassMark comp score
Single PassMark single CPU score Phys PassMark physics score
NEON PassMark NEON score Sequence EuRoC MAV sequence

Output Parameter Description
Tracking Average tracking time

https://doi.org/10.18489/sacj.v36i2.20099

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.20099___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmNkNDY6N2I0OWUxMWE5ZTU1NGEwODE0MWI1MGRjZmI0ZDM0Mzc4MGUyZWU3YTgwMWZmMGFkZGM5NzNhYzg1OGU0YTgyMzpwOlQ6Tg


Matthee, J., Uren, K.R., Van Schoor, G. and Van Daalen, C. : Predicting the performance of ORB-… 93

4.3 Data collection and pre-processing
Two separate steps were followed in collecting data: benchmarking the CPU configuration
and executing ORB-SLAM3 with the 11 EuRoC MAV sequences. Once the CPU frequency
was set, the PassMark benchmark was executed to characterise the performance of the CPU
configuration. Afterwards, the 11 EuRoC MAV sequences were executed on the platform using
a created Docker container that containerised ORB-SLAM3 for the embedded platforms. The
results of the PassMark benchmarking and ORB-SLAM3 execution are combined in a table
format shown in Table 5. Figure 4 shows the procedure that was followed to generate the
necessary dataset. The data used for training the models can be accessed at https://figshare
.com/s/ec2a3faca0f1311ed7dd.

Figure 4: Training data composition procedure

Out of the 15 parameters in the dataset, 14 are chosen as inputs, and the last parameter was
designated output of the model, i.e. the average tracking time that ORB-SLAM3 achieved for
the different EuRoCMAV sequences on the different CPU configurations. It is important to note
that the 14 parameters were immediately reduced to 13, as it was decided to always include
the EuRoC MAV sequence as an input to ensure that the model would have 429 unique data
pairs. If the EuRoC MAV sequence had been left out, there would have been only 39 unique
entries in the dataset. To further reduce the complexity of the prediction model, two feature
selection methods were used: the correlation between the target value and the remaining
inputs and a user-selection method guided by profiling as described in the previous sections.

4.4 Model creation
After the dataset has been generated, the prediction models could be created. Different predic-
tion models were created and evaluated to determine which one performed the best. With the
dataset created, feature selection was applied to it to select the inputs that have a performance
impact on the average tracking time on embedded platforms. The feature selection process
was guided by calculating the correlation between the target and all the inputs and by the
knowledge gained through the literature study and the profiling of ORB-SLAM3. After the

https://doi.org/10.18489/sacj.v36i2.20099

https://protect.checkpoint.com/v2/___https://figshare.com/s/ec2a3faca0f1311ed7dd___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjNiMzA6ZTZlNDgzY2M0M2Y4YTMxZmE2MWRjMTQ3NGVmMzc0NjFjOWVkMjc5MzYzMWYwM2IzZmI2ZWFlMzgyOWFlZjkwZjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://figshare.com/s/ec2a3faca0f1311ed7dd___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjNiMzA6ZTZlNDgzY2M0M2Y4YTMxZmE2MWRjMTQ3NGVmMzc0NjFjOWVkMjc5MzYzMWYwM2IzZmI2ZWFlMzgyOWFlZjkwZjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.20099___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmQ1Yjc6ZmU4MTJkNmZhNDdjNWZjNDhhNmUyZTc3MjQ0NWY1OTYxMGM4NDA4MTc1YmUyZjMyYjE3NWM2MTNhMDIzODUxNjpwOlQ6Tg


Matthee, J., Uren, K.R., Van Schoor, G. and Van Daalen, C. : Predicting the performance of ORB-… 94

feature selection process, the dataset was standardised using Python’s StandardScalar module
to ensure that the dataset has zero mean and unit variance.

Two experiments were conducted, Experiment 1 for verification and Experiment 2 for val-
idation. The only difference between the two experiments was the data pairs used to train
and test the models. Experiment 1 used the entire dataset with a ratio of 75:25 split ratio for
training and testing. Experiment 2 was trained on only a subset of the dataset to see how the
models perform on an unseen embedded platform. The subset of training data included the
data pairs of the A72, A53, and Denver 2 CPUs, with the test data being the data from the A57
CPU. The data from the TX2 CPU were removed as it combined the A72 and A57 CPUs per-
formances. This dataset constituted 363 data pairs, of which 231 pairs were used for training
and 132 for testing, effectively creating a training test set with a 63:37 split ratio. If the model
could achieve adequate performance for an unseen embedded platform, the model would be
validated.

Three modelling techniques were used: a simple Linear Regression model, an ExtraTrees
Regressor, and a multi-layer perceptron model, MLP. Linear Regression offers a straightfor-
ward and interpretable baseline, which allowed the assessing of whether a simple modelling
technique could address the problem. The ExtraTrees Regressor was selected for its robustness
and accuracy, combining multiple decision trees to mitigate overfitting and improve general-
isation. The Multi-Layer Perceptron (MLP) was chosen for its capability to capture complex,
non-linear patterns. These models were created using sklearn.linear_model.LinearRegression,
sklearn.ensemble.ExtraTreesRegressor, and sklearn.neural_network.MLPRegressor. The Linear Re-
gression and ExtraTrees models used default settings, while the MLP model was configured
with random_state = 42, hidden_layer_sizes = 200, and max_iter = 10000. Together, these models
provided a comprehensive evaluation, ranging from basic to advanced approaches. The last
step in the model creation process was to compare the performances of the different models.
Figure 5 shows the steps of the experimental design.

Generate
Dataset

Apply Feature
Selection

Standardise
Dataset

Experiment 1:
Verification -

Entire Dataset

Experiment 2:
Validation -
Subset of
Dataset

Linear
Regression

Extra Trees
Regressor

MLP

Split into
Test/Training sets

Create
Models

Model
Performance
Comparison

Figure 5: Experimental design method

The performance metrics measured included the mean absolute error (MAE), root mean

https://doi.org/10.18489/sacj.v36i2.20099

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.20099___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmIwNjE6NTI0NjMzNTU1MzJhYmE3Y2VjMTdlN2QyMTAwYTVkOGU0OGU0YWU3MDRiZDY1ZjMzZDg2YTRlOGQwZTFlM2UxNTpwOlQ6Tg


Matthee, J., Uren, K.R., Van Schoor, G. and Van Daalen, C. : Predicting the performance of ORB-… 95

square error (RMSE), and the coefficient of determination, R2.
Table 6 shows the performance metrics criteria that the models had to achieve for verific-

ation and validation.
Table 6: Performance metrics for prediction models

MAE % RMSE % R2

less than 10% less than 10% greater than 0.9

Table 7 summarises the two experiments with their names and their performance criteria.
Table 7: Summary of experiments

Experiment Name Dataset MAE % RMSE % R2

1 Verification Entire Dataset < 10% < 10% > 0.9
2 Validation Subset < 10% < 10% > 0.9

5 RESULTS AND DISCUSSION

For verification, the entire dataset was used for training and testing, whereas for validation, a
CPU was removed from the dataset to see how the models would perform for unseen CPUs.

5.1 Experiment 1: Verification
With the dataset created, the feature selection method had to be applied to the data to determ-
ine what data fields would be used as input for the prediction models. Firstly, the correlation
between all the inputs of the dataset were correlated to the target of the model, which was
the average tracking time that the embedded platforms achieved during the execution of ORB-
SLAM3. The inputs with the highest correlation to the target were selected as inputs to the
model. Table 8 shows the top five correlation scores with respect to average tracking time for
different model parameters.

Table 8: Correlation coefficient with respect to average tracking time for model
parameters: Experiment 1

Parameter CPU frequency Single thread Float score NEON Sorting
Correlation −0.73 −0.71 −0.64 −0.57 −0.56

As expected, the most significant correlation coefficient belongs to the CPU frequency, as
higher clock frequencies usually mean applications can execute at faster speeds. The second
most significant contributor is the Single Threaded CPU score of PassMark.

https://doi.org/10.18489/sacj.v36i2.20099

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.20099___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjY1NTg6Mzk1M2I3Y2ZjOTYxY2RlZjMxMWY1NTI3NDE3MmQyZGM5ZDY3OGRkOTQzNzE4ODAxZTRkZDU2NTMxNzkzMjNkMDpwOlQ6Tg


Matthee, J., Uren, K.R., Van Schoor, G. and Van Daalen, C. : Predicting the performance of ORB-… 96

The appropriate inputs of the models were determined by combining the results from the
correlation coefficients and the knowledge gained during Experiment 3.1. From the PassMark
category results, the following inputs were chosen: Single CPU score, Neon Score and integer
score. The Single CPU score was chosen as the tracking thread only executes on a single
core and has the second-highest correlation coefficient. The Neon score was also selected
as the FAST algorithm executes with NEON instructions and contains 19.93% NEON instruc-
tions. The correlation coefficient also showed that the NEON score strongly correlated with
the model’s target. The integer score was the last input, as it is the largest portion of executed
instructions during the FAST algorithm, with 3.71%. Table 9 summarises the inputs that were
used to create the models.

Table 9: Prediction model inputs: Experiment 1

Input CPU frequency Single thread NEON Integer math EuRoC MAV sequence

Python is used to create the prediction models. The data were first standardised using
Python’s StandardScalar module to ensure that the dataset has zero mean and unit variance.
The dataset was also split into a training and test set with a ratio of 75:25 to be used for the
models’ verification.

Different models were created to see what model would provide the best results. Modelling
techniques such as linear regression, ExtraTrees and a simple MLP regressor were used to create
the models. All the models were used from the Scikit-learn library, including LinearRegression
from the linear model module (Scikit-learn, 2024b), ExtraTreesRegressor from the ensemble
module (Scikit-learn, 2024a), and the MLPRegressor from the neural network module (Scikit-
learn, 2024c).

The linear regression model is an ordinary least squares linear regression model with all
the default Python settings. This model was chosen for its simplicity. The ExtraTrees ensemble
methods were chosen as they provide better performance. They are typically made up of more
than one model, and the models learn from each other and they are known for their robustness
(Brownlee, 2020), the default settings were also used. The MLP regressor neural network was
chosen as it has the ability to learn non-linear relationships in the dataset. The hidden layer
size was increased from 100 to 200, and the max iterations to 20000 to allow for convergence.

Table 10 shows the performance of the prediction models.
Table 10: Prediction model performance: Experiment 1

Modelling technique MAE (ms) MAE % RMSE (ms) RMSE % R2

Linear Regression 27.48 10.62 32.76 12.66 0.51
ExtraTrees 7.34 2.84 10.15 3.93 0.95
MLP 9.49 3.67 12.86 4.97 0.93

The ExtraTrees model is the best performing model with an MAE and RMSE percentage of

https://doi.org/10.18489/sacj.v36i2.20099

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.20099___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmU3MzU6MjM4M2I4NjhmZTMwZWJlMTUyOTc0NzYzYzE3YjFiOWVkMWM3YjJkZmI5ZjYwZTBmZGVmMDY3NmY4MzdkYzBmNzpwOlQ6Tg


Matthee, J., Uren, K.R., Van Schoor, G. and Van Daalen, C. : Predicting the performance of ORB-… 97

2.84% and 3.93% and a R2 score of 0.95. The low MAE and RMSE percentages indicate that
the model can make accurate predictions with a small relative error. Both the MAE and RMSE
percentages were calculated by dividing their respective values by the range of the target
training data multiplied by 100. The high R2 score shows that the input variables are good
predictors for the target variable. The linear regression model has the worst performance, and
the MLP regressor has a comparable performance to the ExtraTrees model.

Figures 6(a) to 6(c) show scatter plots for the three prediction models plotting the actual vs.
the predicted values. Figure 6(a) shows that the linear regression model is loosely clustered
around the diagonal line and cannot make accurate predictions. It should also be noted that
it struggles to predict targets with a longer average tracking time accurately. Figures 6(b)
and 6(c) are more tightly clustered around the diagonal line, showing their strength in accur-
acy.

0 100 200 300

Actual Values

0

100

200

300

Pr
ed

ic
te

d 
Va

lu
es

10 20 30 40 50 60
Absolute % error

RMSE%
12.66

(a) Linear regression

0 100 200 300

Actual Values

0

100

200

300

5 10 15 20
Absolute % error

RMSE%
3.93

(b) ExtraTrees

0 100 200 300

Actual Values

0

100

200

300

5 10 15 20 25 30
Absolute % error

RMSE%
4.97

(c) MLP

Figure 6: Scatter plots of prediction results for Experiment 1

The performance that the ExtraTrees model achieved verified the model, and confirms the
robustness and performance capabilities of ExtraTrees models. However, the models were
still trained and tested with all of the embedded platforms. In the next section, the models are
validated with some of the embedded platform data not included in the training.

5.2 Experiment 2: Validation
This section validates the models by predicting the average tracking time of ORB-SLAM3 for
an embedded platform that is not present in the training set. To achieve this, the dataset had
been reduced to only include the data gathered from the Denver 2 CPU, A72 CPU and the
A53 CPU. The unknown CPU that was used for testing is the A57 CPU. The TX2 CPU data was
removed as it was a combination of the A57 and Denver 2 CPU and could have skewed the
results.

https://doi.org/10.18489/sacj.v36i2.20099

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.20099___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmQyYmU6Y2UwNTE3NzEyNTg5NDRmY2EzODQwZDBhMThjMTAzZDEyZGZkODg2MWE1ZDQ5ZjJlZTBhMGVjY2NiMzYwZmRjYjpwOlQ6Tg


Matthee, J., Uren, K.R., Van Schoor, G. and Van Daalen, C. : Predicting the performance of ORB-… 98

The correlation coefficients were also recalculated, and the results are provided in Table 11.
The same top five inputs are present in this training set as with the entire dataset. Since the
correlation table did not change, the same inputs were used to create the validation models
as used for verification.

Table 11: Correlation coefficient with respect to average tracking time for model
parameters: Experiment 2

Parameter CPU frequency Single thread Float score NEON Sorting
Correlation −0.72 −0.66 −0.56 −0.48 −0.46

The same three modelling techniques were used, and the performance of the models is
displayed in Table 12. The best-performing model is still the ExtraTrees model, with the
lowest MAE and RMSE percentages of 9.12% and 13.14%, respectively and a coefficient of
determination score of 0.78. Table 12 shows that the linear regression model now performs
better than the MLP model. Neither the linear regression nor the MLP model achieved the
performance criteria listed in Table 6. Only the ExtraTrees model was able to achieve a MAE%
of below 10%. However, it does not meet the RMSE or R2 criteria. The RMSE performance
is 3.14% over the specified value. The R2 score of 0.78 is well below the required value of
0.9. The model accuracy can be improved by increasing the training and test set data size by
profiling more embedded platforms.

Table 12: Prediction model performance: Experiment 2

Modelling technique MAE (ms) MAE % RMSE (ms) RMSE % R2

Linear Regression 29.39 13.72 36.89 17.22 0.61
ExtraTrees 19.55 9.12 28.16 13.14 0.78
MLP 40.25 18.79 53.40 24.92 0.19

Figures 7(a) to 7(c) show the scatter plots for the three prediction models, plotting the
actual vs. the predicted values for Experiment 2. Figure 7(a) reveals that the linear regression
model shows poor performance. As with Experiment 1, it predicts longer than actual tracking
times. The ExtraTrees model, Figure 7(b), shows the best performance. It can accurately
predict the performance of the average tracking time if below 150 ms. Above the latter the
error increases. This could mean that the model is over-fitted to that portion of the dataset as
there is a denser representation of data in that range. Figure 7(c) shows that the MLP model
could accurately predict only a portion of the dataset, with the rest of the predictions forming
another distinct pattern.

Changing the training data influenced the model’s results. A contributor to the decrease in
performance can be caused by the decrease in training data from 321 data pairs down to 231
to train the model with. The MLP had a drastic performance decrease. On the other hand, the

https://doi.org/10.18489/sacj.v36i2.20099

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.20099___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjUzZTE6NDkzNGUwNGQwNzUyNjVmYzkzMWMxYTVlZTRkMjAyOWExZDhiYmU3MDY0YTE3MzRlNGQ0N2RkMjkwMWEwZTkzZjpwOlQ6Tg


Matthee, J., Uren, K.R., Van Schoor, G. and Van Daalen, C. : Predicting the performance of ORB-… 99

0 100 200 300

Actual Values

0

100

200

300

Pr
ed

ic
te

d 
Va

lu
es

10 20 30 40
Absolute % error

RMSE%
17.22

(a) Linear regression

0 100 200 300

Actual Values

0

100

200

300

5 10 15 20 25
Absolute % error

RMSE%
13.14

(b) ExtraTrees

0 100 200 300

Actual Values

0

100

200

300

10 20 30 40 50 60
Absolute % error

RMSE%
24.92

(c) MLP

Figure 7: Scatter plots of prediction results for Experiment 2

linear regression had a similar performance to that of the entire dataset. ExtraTrees is still the
best performing model. The experiment validated the approach by creating a model that can
predict the performance of ORB-SLAM3 on embedded platforms. However, the models were
not able to achieve the required performance, with the ExtraTrees model missing the RMSE
criteria with 3.14% and the R2 score with 0.12.

6 CONCLUSION

The paper showed that the performance that ORB-SLAM3 can achieve on embedded platforms
can be predicted. Through profiling and investigation into the execution of the code, different
models were created to estimate the performance of ORB-SLAM3 on embedded platforms. The
predictive models’ target was the average tracking time of ORB-SLAM3, and the inputs to the
models were a selection of the PassMark benchmarking results. The models could predict the
performance of ORB-SLAM3 with satisfactory results. The ExtraTrees model for Experiment 1,
verification, had the best results with 2.84%, 3.93%, 0.95 for the MAE, RMSE and the R2 score,
respectively. For Experiment 2, validation, the ExtraTrees model was also the best model with
the MAE, RMSE, and R2 scores 9.12%, 13.14%, 0.78. The paper showed the feasibility of
creating a model in estimating the performance of ORB-SLAM3 on embedded platforms. One
of the limitations is the number of available embedded platforms to generate the training data,
along with the use of only the EuRoC MAV dataset. It should also be noted that the models
were trained on CPU architectures of the ARMv8a architecture, so the models will perform
poorly on other architectures.

https://doi.org/10.18489/sacj.v36i2.20099

https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.20099___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjE0NzM6YWNkZGIwZmVkZWVlY2QzOWFiMWQ1MmQ1ZDNhYjliNzgyM2IxZGRiOGZkZTVjYjYxMjFlNmVjZmVkY2NjMGJkYTpwOlQ6Tg


Matthee, J., Uren, K.R., Van Schoor, G. and Van Daalen, C. : Predicting the performance of ORB-… 100

References

Abouzahir, M., Elouardi, A., Latif, R., Bouaziz, S., & Tajer, A. (2017). Embedding SLAM al-
gorithms: Has it come of age? Robotics and Autonomous Systems, 100, 14–26. https://d
oi.org/10.1016/j.robot.2017.10.019

ARM. (2024a). ARM Cortex-A57 MPCore processor technical reference manual [Accessed: 12
September 2024]. ARM. https : / /developer . arm . com/documentation /ddi0488/c
/CIHBBFEF

ARM. (2024b). ArmMAP: Scalable profiler for server/hpc developers [Accessed: 12 September
2024]. https://www.arm.com/products/development-tools/server-and-hpc/forge
/map

Barros, A. M., Michel, M., Moline, Y., Corre, G., & Carrel, F. (2022). A comprehensive survey
of visual SLAM algorithms. Robotics, 11(1), 24. https://doi.org/10.3390/robotics110
10024

Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-up robust features (SURF).
Computer Vision and Image Understanding, 110(3), 346–359. https://doi.org/https://d
oi.org/10.1016/j.cviu.2007.09.014

Brownlee, J. (2020). Why Use Ensemble Learning? [Accessed: 12 September 2024]. https://m
achinelearningmastery.com/why-use-ensemble-learning/

Bujanca, M., Gafton, P., Saeedi, S., Nisbet, A., Bodin, B., O’Boyle, M. F., Davison, A. J., Kelly,
P. H., Riley, G., Lennox, B., Luján, M., & Furber, S. (2019). Slambench 3.0: Systematic
automated reproducible evaluation of SLAM systems for robot vision challenges and
scene understanding. 2019 International Conference on Robotics and Automation (ICRA),
6351–6358. https://doi.org/10.1109/ICRA.2019.8794369

Campos, C., Elvira, R., Rodríguez, J. J. G., M. Montiel, J. M., & D. Tardós, J. (2021). ORB-
SLAM3: An accurate open-source library for visual, visual–inertial, and multimap SLAM.
IEEE Transactions on Robotics, 37(6), 1874–1890. https://doi.org/10.1109/TRO.2021
.3075644

Chen, C., Zhu, H., Li, M., & You, S. (2018). A review of visual-inertial simultaneous localization
and mapping from filtering-based and optimization-based perspectives. Robotics, 7(3),
45. https://doi.org/10.3390/robotics7030045

Docker. (2018). Enterprise Application Container Platform – Docker [Accessed: 12 September
2024]. https://www.docker.com/

Eyvazpour, R., Shoaran, M., & Karimian, G. (2022). Hardware implementation of SLAM al-
gorithms: A survey on implementation approaches and platforms. Artificial Intelligence
Review, 56(7), 6187–6239. https://doi.org/10.1007/s10462-022-10310-5

Kleeman, L. (2003). Advanced sonar and odometry error modeling for simultaneous localisa-
tion and map building. Proceedings 2003 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2003), 1, 699–704. https://doi.org/10.1109/IROS.2003.12
50711

https://doi.org/10.18489/sacj.v36i2.20099

https://protect.checkpoint.com/v2/___https://doi.org/10.1016/j.robot.2017.10.019___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjkyZWE6MTA1NzQ4YjVkYWI0ZjUyYTQ5NjE1YmNhOWEyODYwZDAzZDBjNTQ3YjJiZDU1ZDliZjA2ZTE2YTliNmIxM2E1NDpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1016/j.robot.2017.10.019___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjkyZWE6MTA1NzQ4YjVkYWI0ZjUyYTQ5NjE1YmNhOWEyODYwZDAzZDBjNTQ3YjJiZDU1ZDliZjA2ZTE2YTliNmIxM2E1NDpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://developer.arm.com/documentation/ddi0488/c/CIHBBFEF___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjYyYTc6NmQzZTk4YmMwMWMyNzU1NjIyOTk4NDU4MDE3NzQwYTgzN2RkOWNkM2JhZGUzYWQzYWE0Nzc4NjYxZjZlYTA5YTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://developer.arm.com/documentation/ddi0488/c/CIHBBFEF___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjYyYTc6NmQzZTk4YmMwMWMyNzU1NjIyOTk4NDU4MDE3NzQwYTgzN2RkOWNkM2JhZGUzYWQzYWE0Nzc4NjYxZjZlYTA5YTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://www.arm.com/products/development-tools/server-and-hpc/forge/map___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmEwODc6MTQ0YTk3YmM4OGYyZjlmMjIzNTRjNjQ5MzI4MjIzMzlkZjJhNTlmOGVhM2JkZmI1ODNiMzViZTVjMmI5NWNjNDpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://www.arm.com/products/development-tools/server-and-hpc/forge/map___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmEwODc6MTQ0YTk3YmM4OGYyZjlmMjIzNTRjNjQ5MzI4MjIzMzlkZjJhNTlmOGVhM2JkZmI1ODNiMzViZTVjMmI5NWNjNDpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.3390/robotics11010024___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2Ojg5YTU6ZjM2MTQ1N2Y1ODZkNGJkYTExZDZmOTA0ODc5MGU5YzY4NjAxZDVlMDM2N2ZlMWU5NjA5ZjIxMjMwMmI3NTkzNTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.3390/robotics11010024___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2Ojg5YTU6ZjM2MTQ1N2Y1ODZkNGJkYTExZDZmOTA0ODc5MGU5YzY4NjAxZDVlMDM2N2ZlMWU5NjA5ZjIxMjMwMmI3NTkzNTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/https://doi.org/10.1016/j.cviu.2007.09.014___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjMwYWI6NDBjNDcxNjlhNGNmNThjMTU4MzQ5OWFkZTViYzcxYWRjZGJmNjdhMWNhZmJlM2VhMDRmYmJlZjYxMjA3MGNmOTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/https://doi.org/10.1016/j.cviu.2007.09.014___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjMwYWI6NDBjNDcxNjlhNGNmNThjMTU4MzQ5OWFkZTViYzcxYWRjZGJmNjdhMWNhZmJlM2VhMDRmYmJlZjYxMjA3MGNmOTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://machinelearningmastery.com/why-use-ensemble-learning/___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjNhMjA6ZGM2Njk1MmM3ZTgzOTU4MmFhNzY1YjdlMWQxNjI4ZDE0ODA5YmM0ZWU5NjMzNWRiYzM5NDM0MjBhZGI1Njg1MjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://machinelearningmastery.com/why-use-ensemble-learning/___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjNhMjA6ZGM2Njk1MmM3ZTgzOTU4MmFhNzY1YjdlMWQxNjI4ZDE0ODA5YmM0ZWU5NjMzNWRiYzM5NDM0MjBhZGI1Njg1MjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1109/ICRA.2019.8794369___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjAxM2U6MmNjYWMwZjc1MTQ0OGFjMmZjMTk3ZjllN2QxMDJkZGJkYzcwYjc3OGQ4ZjIyZjA0YTk1NWZiYTM4YmQ4NmU2YTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1109/TRO.2021.3075644___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmNjMmM6YzVjNTRiNmRlZjY4MWEzNmU5NjNmZmQ2OTllMGM2Yjk4YjBlMTA0ZjIxMzgzZWY1ZjRmOTdkZjkwMGNiMzA1YjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1109/TRO.2021.3075644___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmNjMmM6YzVjNTRiNmRlZjY4MWEzNmU5NjNmZmQ2OTllMGM2Yjk4YjBlMTA0ZjIxMzgzZWY1ZjRmOTdkZjkwMGNiMzA1YjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.3390/robotics7030045___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjVkZjY6MzI0MzY4NmE0MDY4NGU0OTdlNzY0ODNmOWY5NTNlNDdiMzljYjE2MTdjODlhMjkxODhmNDJjZGJkMjNiYTllNzpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://www.docker.com/___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjQ0ZjI6OTA2ZTJmNjI3OTIwMDIxYzZmNmQ1YjM4NzEzMThkMzQ0YjU1ZjM3NTdlYjU1YjI1MGM3OTk3YzMzNWMxOGNkMDpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1007/s10462-022-10310-5___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmYxMmU6ZDVkNDM0YjRmMGNiOTYxM2VmODY1YmMwZWJiNmJlYmIzODJlZmY3MzkzZmE0ZTNjNTI3NmYxNGVlMmZkNGNlYzpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1109/IROS.2003.1250711___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjhkNzU6OGM1MjNhZTQ1NjQ3M2U0MTI3ZDZkYzJjMTVlZWM1ZTZlN2IwNWU3NjYyY2YyYTJiMzUwMWMyYWNjMzc3NjVhMjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1109/IROS.2003.1250711___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjhkNzU6OGM1MjNhZTQ1NjQ3M2U0MTI3ZDZkYzJjMTVlZWM1ZTZlN2IwNWU3NjYyY2YyYTJiMzUwMWMyYWNjMzc3NjVhMjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.20099___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjI5MDc6MDllODExZGY3MmIxYmEzYWNhMTg0YzZiYzY4ZDg1MWU2YTVjMTEzYWUyNmFhNzMzMjMxYTMyMTNiNzc4YTFjYjpwOlQ6Tg


Matthee, J., Uren, K.R., Van Schoor, G. and Van Daalen, C. : Predicting the performance of ORB-… 101

Kohlbrecher, S., von Stryk, O., Meyer, J., & Klingauf, U. (2011). A flexible and scalable SLAM
system with full 3D motion estimation. 2011 IEEE International Symposium on Safety,
Security, and Rescue Robotics, 155–160. https://doi.org/10.1109/SSRR.2011.610677
7

Kumiawan, D., Jati, A. N., & Sunarya, U. (2016). A study of 2D indoor localization andmapping
using FastSLAM 2.0. 2016 International Conference on Control, Electronics, Renewable
Energy and Communications (ICCEREC), 152–156. https://doi.org/10.1109/ICCEREC.2
016.7814991

Liu, X., Yang, Y., Xu, B., & Schwertfeger, S. (2024). Benchmarking SLAM algorithms in the
cloud: The SLAM hive system [Accessed: 22 October 2024]. https://arxiv.org/abs/24
06.17586

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60, 91–110. https://doi.org/10.1023/B:VISI.000002966
4.99615.94

Milford, M., Wyeth, G., & Prasser, D. (2004). RatSLAM: A hippocampal model for simultan-
eous localization and mapping. IEEE International Conference on Robotics and Automation,
ICRA 2004, 1, 403–408. https://doi.org/10.1109/ROBOT.2004.1307183

Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B., et al. (2003). FastSLAM 2.0: An improved
particle filtering algorithm for simultaneous localization and mapping that provably
converges. IJCAI’03: Proceedings of the 18th international joint conference on Artificial
intelligence, 1151–1156. https://dl.acm.org/doi/10.5555/1630659.1630824

Mur-Artal, R., Montiel, J. M. M., & Tardós, J. D. (2015). ORB-SLAM: A versatile and accurate
monocular SLAM system. IEEE Transactions on Robotics, 31(5), 1147–1163. https://doi
.org/10.1109/TRO.2015.2463671

Mur-Artal, R., & Tardós, J. D. (2017). ORB-SLAM2: An open-source SLAM system for mon-
ocular, stereo, and RGB-D cameras. IEEE Transactions on Robotics, 33(5), 1255–1262.
https://doi.org/10.1109/TRO.2017.2705103

Nardi, L., Bodin, B., Zia, M. Z., Mawer, J., Nisbet, A., Kelly, P. H. J., Davison, A. J., Luján, M.,
O’Boyle, M. F. P., Riley, G., Topham, N., & Furber, S. (2015). Introducing SLAMBench,
a performance and accuracy benchmarking methodology for SLAM. 2015 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 5783–5790. https://doi.org/10.1
109/ICRA.2015.7140009

Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., Kohi, P.,
Shotton, J., Hodges, S., & Fitzgibbon, A. (2011). KinectFusion: Real-time dense surface
mapping and tracking. 2011 10th IEEE International Symposium on Mixed and Augmented
Reality, 127–136. https://doi.org/10.1109/ISMAR.2011.6092378

PassMark. (2024). PassMark performance test – PC benchmark software [Accessed: 12 Septem-
ber 2024]. passmark. https://www.passmark.com/products/performancetest/index.p
hp

https://doi.org/10.18489/sacj.v36i2.20099

https://protect.checkpoint.com/v2/___https://doi.org/10.1109/SSRR.2011.6106777___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2Ojg2MDI6ZGFjN2Y0NTg2YWNkN2U2ZTA3ZWM3Yjg4YTdjZGVjMThhZGVhOTBkMDc5MWU2NDBmMWNjNGFmNmE1OGRjZjY5YzpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1109/SSRR.2011.6106777___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2Ojg2MDI6ZGFjN2Y0NTg2YWNkN2U2ZTA3ZWM3Yjg4YTdjZGVjMThhZGVhOTBkMDc5MWU2NDBmMWNjNGFmNmE1OGRjZjY5YzpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1109/ICCEREC.2016.7814991___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjcwYTM6Y2M4MjkzZTYyNjk3ZTIxNGQxOTg5NjA1MTkxMTY4ZDNjMThiNmY1OWIxMjFlNmQ5YTRmZmMzOTE3OGI2YzYwMjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1109/ICCEREC.2016.7814991___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjcwYTM6Y2M4MjkzZTYyNjk3ZTIxNGQxOTg5NjA1MTkxMTY4ZDNjMThiNmY1OWIxMjFlNmQ5YTRmZmMzOTE3OGI2YzYwMjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://arxiv.org/abs/2406.17586___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjM4YzM6ZDMwMzA2YWE3MzRiNzE0ZGI5YjU1ZTY2ZmQ2NDJiY2M5NDUwNjMzMjJkOTliOTZjMTk4MWY1MWYwYjQzNGU4MDpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://arxiv.org/abs/2406.17586___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjM4YzM6ZDMwMzA2YWE3MzRiNzE0ZGI5YjU1ZTY2ZmQ2NDJiY2M5NDUwNjMzMjJkOTliOTZjMTk4MWY1MWYwYjQzNGU4MDpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1023/B:VISI.0000029664.99615.94___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjNmMTY6NjM0MTBkYTY3YzU5ZDkyMzJhNjVjYzYzMDI2ZTQ5ZDQyY2IyODQxMzZiNWEzY2I0NzZjNTlhOWQxYmVlNWNkZjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1023/B:VISI.0000029664.99615.94___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjNmMTY6NjM0MTBkYTY3YzU5ZDkyMzJhNjVjYzYzMDI2ZTQ5ZDQyY2IyODQxMzZiNWEzY2I0NzZjNTlhOWQxYmVlNWNkZjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1109/ROBOT.2004.1307183___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjE3YzE6YWUxY2MzOWMyMDc4YzJmZWFkOTg0MGE0MTdkNDZmMThlMzgwYjRlYmI1Nzc2MmIxMzdkYjIwZTU5YTFjN2IzNzpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://dl.acm.org/doi/10.5555/1630659.1630824___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjBhZmU6Y2JiMDliN2Q0ZTlkNGUzMDExYjE5NjJhOTdmY2I3YmFjOTZlMmQzNThmYjM5MjM2NzI1NTExODY2YzVjNGQyNTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1109/TRO.2015.2463671___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjA3YmI6MjY2YzhkYTc4Y2M4Y2Y3YWRiNGMxZTI3YmU2NTAzYjBmYWZiZDRlODc3MDg0NGY2ZDhhZDZmYWI3ZDkyOGUwMjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1109/TRO.2015.2463671___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjA3YmI6MjY2YzhkYTc4Y2M4Y2Y3YWRiNGMxZTI3YmU2NTAzYjBmYWZiZDRlODc3MDg0NGY2ZDhhZDZmYWI3ZDkyOGUwMjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1109/TRO.2017.2705103___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjM4YmU6ZGI3ZDdhNWI0YTE0YzEzOGJhMjIwY2U4NTY1Y2ZhYzk0YzAwODBiY2M4MjVkYmQwZjQxNGMwNjI4YzUzODg3MzpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1109/ICRA.2015.7140009___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmQxYjk6YzQ4Nzk3MDM0ZDdkZjgyZmFjY2MzZmY3MzM2N2I5NTgxNThmNTBhMzlhYzRhZGNlYjlkYzYwYjAxOTgzN2Y1YjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1109/ICRA.2015.7140009___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmQxYjk6YzQ4Nzk3MDM0ZDdkZjgyZmFjY2MzZmY3MzM2N2I5NTgxNThmNTBhMzlhYzRhZGNlYjlkYzYwYjAxOTgzN2Y1YjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1109/ISMAR.2011.6092378___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmQ5YWY6MGQ4ZjEwZWMzZGRlMDM5MzhkMjZhMmExY2Y4ZTI2MjYwOWJkMTIyMzE4YmRkNTE0ZTY5MDE0NDg5YTEwZjk3NTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://www.passmark.com/products/performancetest/index.php___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjM5NWQ6NWI2OGRhYWIxMmVkNTA3YWFiNTVjNzE2NzYzOGZhMDZmNGI5OTViZTNmOTYxYWY3NzAwYjJhNmQwYzljMGE2ODpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://www.passmark.com/products/performancetest/index.php___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjM5NWQ6NWI2OGRhYWIxMmVkNTA3YWFiNTVjNzE2NzYzOGZhMDZmNGI5OTViZTNmOTYxYWY3NzAwYjJhNmQwYzljMGE2ODpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.20099___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmExOWI6NzU2NzAyYjZjYzM0MmE4MDYzNjI0YzFkOTM2ZWViNzM4NjU3NWEwYTc5YTk4ZGQ1ZTRmNjU3ZWQ0ZjhmYTU0NjpwOlQ6Tg


Matthee, J., Uren, K.R., Van Schoor, G. and Van Daalen, C. : Predicting the performance of ORB-… 102

Peng, T., Zhang, D., Hettiarachchi, D. L., & Loomis, J. (2020). An evaluation of embedded GPU
systems for visual SLAM algorithms. Electronic Imaging, 32(6), 325. https://doi.org/10
.2352/ISSN.2470-1173.2020.6.IRIACV-325

Ragot, N., Khemmar, R., Pokala, A., Rossi, R., & Ertaud, J.-Y. (2019). Benchmark of visual
SLAM algorithms: ORB-SLAM2 vs RTAB-Map. 2019 Eighth International Conference on
Emerging Security Technologies (EST). https://doi.org/10.1109/est.2019.8806213

Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). ORB: An efficient alternative to
SIFT or SURF. 2011 International Conference on Computer Vision, 2564–2571. https://d
oi.org/10.1109/ICCV.2011.6126544

Scikit-learn. (2024a). sklearn ExtraTreesRegressor [Accessed:12 September 2024]. https://sc
ikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.ht
ml

Scikit-learn. (2024b). sklearn LinearRegression [Accessed: 12 September 2024]. https://sciki
t-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

Scikit-learn. (2024c). sklearn MLPRegressor [Accessed: 12 September 2024]. https://scikit-l
earn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html

Sumikura, S., Shibuya, M., & Sakurada, K. (2019). OpenVSLAM: A versatile visual SLAM frame-
work. Proceedings of the 27th ACM International Conference on Multimedia, 2292–2295.
https://doi.org/10.1145/3343031.3350539

Taketomi, T., Uchiyama, H., & Ikeda, S. (2017). Visual SLAM algorithms: A survey from 2010
to 2016. IPSJ Transactions on Computer Vision and Applications, 9(1), 1–11. https://doi
.org/10.1186/s41074-017-0027-2

Zhao, Y., Xu, S., Bu, S., Jiang, H., & Han, P. (2019). GSLAM: A general SLAM framework and
benchmark. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 1110–
1120. https://doi.org/10.1109/ICCV.2019.00120

https://doi.org/10.18489/sacj.v36i2.20099

https://protect.checkpoint.com/v2/___https://doi.org/10.2352/ISSN.2470-1173.2020.6.IRIACV-325___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjI4NWM6NGFiOWY5YjAyNjAyOWRlZWJjYWVkODA5N2VhNjAwNWQ5N2U2M2RhMTdiZTM3NmMxN2Q1NDFhZmI5MzMyOTMxYTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.2352/ISSN.2470-1173.2020.6.IRIACV-325___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjI4NWM6NGFiOWY5YjAyNjAyOWRlZWJjYWVkODA5N2VhNjAwNWQ5N2U2M2RhMTdiZTM3NmMxN2Q1NDFhZmI5MzMyOTMxYTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1109/est.2019.8806213___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjZlNjc6MGRhZDE4ZTkzNTFkZjBjYzk0NmQ4NmZhNTU4ZDAyYjZlMmZlMWY0M2E4ZGQxNGNkZDFmZGQ3MzVlOTRhYzQwMjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1109/ICCV.2011.6126544___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjdmMjg6YjhjYTk2ZTJhMzVlYzBkZGViZjdmNjc2MjMxZDFjZDk5MzljMDM0ZjEyMmY2YTYxMDUzMmYyZjBlODUxZGY5ZDpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1109/ICCV.2011.6126544___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjdmMjg6YjhjYTk2ZTJhMzVlYzBkZGViZjdmNjc2MjMxZDFjZDk5MzljMDM0ZjEyMmY2YTYxMDUzMmYyZjBlODUxZGY5ZDpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmRiYmI6MWI5NzQ4MDdhZTU2YmE0MDI3NDllZDczMzExMGRjNjY5OWE1YWFkYWRmNzFjZDM0OWQ4MTRlMWE3ZDQ4YWE3ZDpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmRiYmI6MWI5NzQ4MDdhZTU2YmE0MDI3NDllZDczMzExMGRjNjY5OWE1YWFkYWRmNzFjZDM0OWQ4MTRlMWE3ZDQ4YWE3ZDpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmRiYmI6MWI5NzQ4MDdhZTU2YmE0MDI3NDllZDczMzExMGRjNjY5OWE1YWFkYWRmNzFjZDM0OWQ4MTRlMWE3ZDQ4YWE3ZDpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjQ0NDg6NzNiZTA2NWNiZWJlMmJhNzQyN2VhZDY4YzgzNjkwM2U5ZmI1MWQxZGM5ZTUyNDQzMmViZjJhMDk1MTlkNmY2NzpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjQ0NDg6NzNiZTA2NWNiZWJlMmJhNzQyN2VhZDY4YzgzNjkwM2U5ZmI1MWQxZGM5ZTUyNDQzMmViZjJhMDk1MTlkNmY2NzpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2Ojg1Njc6OGUwNmYyMTgzYTM3ZjhjYzMwMzRlMzU4ZmVkNjFlNGZlYjhkNDY1ZTM0ZjhkZTkwYmEzN2ZiZjU2YzIwMzgwYjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2Ojg1Njc6OGUwNmYyMTgzYTM3ZjhjYzMwMzRlMzU4ZmVkNjFlNGZlYjhkNDY1ZTM0ZjhkZTkwYmEzN2ZiZjU2YzIwMzgwYjpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1145/3343031.3350539___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OjAwZjU6YjE0YWQ2ZDlhOWNkNTgyZWNjNzhhZmQwZjVjMjY3NGY1M2NhMWMxMzI4MTU4NmRjODM4OGJmYjIwYjk3M2E3NzpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1186/s41074-017-0027-2___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmMzNTg6NjU1MTZhY2EwOWMxMzE0OWRmNmVkODYxMWEwMzAyYTE3OWQ5NDc3M2UwZmMzY2QwODUzYzRiNmQ1YzQ0OTZmOTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1186/s41074-017-0027-2___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmMzNTg6NjU1MTZhY2EwOWMxMzE0OWRmNmVkODYxMWEwMzAyYTE3OWQ5NDc3M2UwZmMzY2QwODUzYzRiNmQ1YzQ0OTZmOTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.1109/ICCV.2019.00120___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmNmMDA6OThmMDVhMGM3NjBhYTAzMDIzNjkzNTE4MjcwY2UwNjMxYmE0YmIzZmNhYTM0ZjYyY2MzNDU5Yzk0M2YzNjk1YTpwOlQ6Tg
https://protect.checkpoint.com/v2/___https://doi.org/10.18489/sacj.v36i2.20099___.YzJlOnVuaXNhbW9iaWxlOmM6bzozYTY1OTEwNDllYjY0YTcxOTM5ODJlOGY4ZDhhZTE3MTo2OmJmMDU6NzQ1NjEwM2FmNjJlNTgyM2E1YzdmMzhjODVmODRkNjI3Y2RiNmMyZTcyNDY4ZGJjODFlYzQ4MzViN2EwMGU5MjpwOlQ6Tg

	Introduction
	Hardware and Software implementation
	Hardware - Embedded platforms
	Software - ORB-SLAM3
	Implementation

	Performance profiling
	ORB-SLAM3 profiling

	Experimental design
	Model inputs and outputs
	Dataset generation for modelling
	Data collection and pre-processing
	Model creation

	Results and Discussion
	Experiment 1: Verification
	Experiment 2: Validation

	Conclusion

