SACJ 37(2) December 2025
Research Article

Improving greybox fuzzing with
dictionary-based mutations: A systematic
literature review

Enock L. Dube? @2, Boluwaji A. Akinnuwesi® (2, Stephen G. Fashoto®® (9,
Petros M. Mashwama? (), Vusi W. Tsabedze?

@ Department of Computer Science, University of Eswatini, Eswatini
b Department of Informatics, Namibia University of Science and Technology, Windhoek, Namibia

ABSTRACT

Detecting deep bugs that are guided by complex conditions, based on specific byte sequences of the input, often
requires input structure-aware or grammar-aware fuzzing strategies. However, the grammar or specification of
the input may not be readily available. In this regard, there exists anecdotal evidence that dictionary-based
mutations contribute to preserving the syntactic structure of input test cases and may approximate the efficacy
of grammar-aware fuzzing. It is not yet clear as to which is the best strategy for automatically extracting fuzzing
dictionary tokens from the codebase of the program under test. In this study we conduct a systematic review of
the impact of dictionary-based mutations on the fuzzing process. We further review strategies for automatically
extracting dictionary tokens and optimizing dictionary-based mutations. Our findings are that current strategies
for extracting fuzzing dictionary are not optimised for highly structured input. Furthermore, about 58% of the
reviewed state-of-the art fuzzing tools rely on the random mutation operator distribution of respective baseline
fuzzer. Moreover, the evaluation of these fuzzing tools report on aggregated performance of mutation operator
scheduling algorithms, and not specific individual operators such as dictionary-based mutation operators.

Keywords Dictionary-based mutation, Mutational Fuzzing, Greybox fuzzing, Software vulnerability, Software
testing

Categories e Software and its engineering ~ Software creation and management, Software verification and validation,
Software defect analysis, Software testing and debugging

Email Article history

Enock L. Dube — eldube@uniswa.sz (CORRESPONDING) Received: 4 March 2025
Boluwaji A. Akinnuwesi — bakinnuwesi@uneswa.ac.sz Accepted: 15 July 2025
Stephen G. Fashoto — sgfashoto@uniswa.sz Online: 22 December 2025

Petros M. Mashwama - petros@uniswa.sz
Vusi W. Tsabedze - vtsabedze@uneswa.ac.sz

1 INTRODUCTION

Fuzz testing, also known as fuzzing, is a software testing technique that can be used to detect
faults or weaknesses such as correctness bugs and security vulnerabilities in an input-parsing

Dube, E.L., et al. (2025). Improving greybox fuzzing with dictionary-based mutations: A systematic literature
review . South African Computer Journal 37(2), 74-103. https://doi.org/10.18489/sacj.v37i2.21430

Copyright © the author(s); published under a Creative Commons NonCommercial 4.0 License
SACJ is a publication of SAICSIT. ISSN 1015-7999 (print) ISSN 2313-7835 (online)

https://orcid.org/0009-0008-1180-2099
https://orcid.org/0000-0002-7755-6061
https://orcid.org/0000-0002-2919-9434
https://orcid.org/0000-0003-4378-6245
https://orcid.org/0000-0001-9223-4266
mailto:eldube@uniswa.sz
mailto:bakinnuwesi@uneswa.ac.sz
mailto:sgfashoto@uniswa.sz
mailto:petros@uniswa.sz
mailto:vtsabedze@uneswa.ac.sz
https://www.sacj.org.za
https://doi.org/10.18489/sacj.v37i2.21430
http://creativecommons.org/licenses/by-nc/4.0/
https://www.sacj.org.za
https://www.saicsit.org/

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature ... 75

program (Liang et al., 2018). It works by repeatedly running the program under test (PUT)
with mutated or fuzzed input test cases. Ever since it’s conceptualisation in 1990 (Miller et al.,
1990), fuzz testing remains a widely used technique, and it provides an inexpensive mechan-
ism for eliciting faulty program behaviour. Compared to other vulnerability testing techniques,
such as static analysis and penetration testing (Halfond et al., 2011; Liu et al., 2012), fuzz test-
ing scales well to large programs (Godefroid, 2020). However, a major limitation of most
fuzzing frameworks is that they often fail to deal with programs that require highly structured
input data such as JavaScript and XML objects (Zalewski, 2015). In this regard, fuzzing highly
structured input often generates invalid input test cases that are promptly rejected in the pars-
ing phase of the target program under test. In addition to model-based fuzzing approaches,
such as grammar-based fuzzing, dictionary-based mutational fuzzing was introduced to mitig-
ate the limitations of the grammar-blind nature of fuzzing (Zalewski, 2015).

Dictionary-based mutation is implemented by most of the state-of-the-art fuzzers such
as American Fuzzy Lop (AFL) (Zalewski, 2013), libFuzzer (Serebryany, 2015) and Hongg-
fuz (Swiecki & Grobert, 2025). Despite anecdotal evidence (Zalewski, 2015) that dictionary-
based mutation can approximate grammar-based input generation, and therefore improve effi-
ciency of the fuzzing process, there exist a limited number of empirical studies on this approach.
In this study, we conduct a systematic literature review on the impact of dictionary-based muta-
tion on the fuzzing process. The significance of the study is that it provides a consolidated
overview of dictionary-based mutational fuzzing. To the best of our knowledge, this is the
first systematic literature review addressing this topic. The subsections that follow provide
background information on the fuzz testing process and further discuss the dictionary-based
mutation strategy in more detail.

1.1 Background of Fuzz Testing Process

Software vulnerabilities, such as memory corruption, remain a major cause of many severe
threats to input parsing programs (Gan et al., 2018). Studies have shown that nation-state
and independent hackers rely on the presence of software vulnerabilities to develop exploits
that break down a target program execution with the intention of performing malicious ac-
tions such as control flow hijacking, information leakage, and denial of service attacks (Nagy
& Hicks, 2019). Unlike independent hackers, nation-state hackers are sponsored by national
governments to launch cyber-attacks that are typically aligned to political or military object-
ives. The target of these attacks could be an individual person, organisation or another state.
Bugs and vulnerabilities in the software systems enable the execution of such attacks.

A software vulnerability is a defect that may originate from human mistake in the design
of the software, and it may introduce an exploitable fault, flaw or bug in the code. A fault
may result in a failure characterised by an observed deviation from expected behaviour of
a program (IEEE, 1990). To identify and mitigate these vulnerabilities, software developers
may employ various testing and vulnerability detection techniques, such as fuzz testing. The
primary goal of this testing is to minimise the exploitability of a software system.

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature ... 76

In principle, a vulnerability detection and analysis system should be sound and complete.
A sound system never approves a vulnerable program (no vulnerabilities are missed) and is said
to be complete if all secure programs can be approved (no false vulnerabilities). By extension,
a vulnerability detection and analysis system is said to be both sound and complete if it can
approve all secure programs and disapprove all vulnerable programs (no missed vulnerabilities
and no false vulnerabilities) (Xie et al., 2005). In practice, however, most fuzz test techniques
and strategies are neither sound nor complete (Ghaffarian & Shahriari, 2017). The goal of
fuzz testing is to identify problematic program states which may be associated with security
vulnerabilities (Serebryany, 2015). In recent years many fuzz testing techniques (King, 1976),
tools (Bohme et al., 2019; Serebryany, 2015; Zalewski, 2013) and frameworks (Fioraldi, Maier
et al., 2020) have been proposed, implemented and evaluated. These methods can be classified
into three main strategic approaches: Blackbox, Greybox and Whitebox fuzzing. Figure 1
provides a workflow that summarises the common processing steps shared by these three
different approaches.

Initial Seed Corpus

Blackbox

| Fuzzing !
|
] 1
1 1
; i
Seed | Greybox Seed Power !
pmmmmmmmmm e Pool/Queue Fuzzing * Selection Scheduling i
1 1
: i} ! :
! (o] N TR
: Whitebox
Blackbox Fuzlzmg
Fuzzing New i ——j
! Coverage? Yes hiees S 2
! Constraint Mutational Generational
! Solving Process Process
] T

No

P,

Trigger PUT . Test
Crash? Execution Case
Y

Yes

Vulnerability
Analysis

Figure 1: Workflow of Different Fuzzing Approaches®

2 Adapted from P. Wang et al. (2024)

As depicted in Figure 1, the fuzzing process is a loop that commences by selecting a seed
or input test case from a seed pool or queue. It uses a power schedule to determine the seed’s
energy. The energy specifies how many times each selected input may be mutated. The term
power schedule refers to a mechanism that assigns more energy to interesting input test cases
such as those that explore more code paths. The next step executes the program under test

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature... 77

using the newly generated input test case. The program execution is monitored to determine
if it leads to a failure which must then be analysed to determine the presence of a bug or flaw
in the code. As indicated in Figure 1, some steps may be skipped depending on the fuzzing
strategy adopted.

All three fuzzing strategic approaches repeatedly generate input test cases and execute the
program under test while monitoring the program state to detect any abnormal behaviour
caused by correctness bugs or security vulnerabilities in the code. Blackbox fuzzing (indicated
by blue lines in Figure 1) randomly generates new input test cases and skips the input selection
and power scheduling steps. In general, Blackbox fuzzing tests the specified behaviour of
a target PUT and often does not require the source code (Zeller et al., 2024). It is widely
applicable without prior knowledge of internal program constructs. While random test case
generation in Blackbox fuzzing is fast and scales well to large programs, its major limitation
is that it may generate a lot of invalid input test cases. As a result, Blackbox fuzzing may
take longer execution time to generate a new test case that triggers a failure in the target
PUT. There is no guarantee that Blackbox fuzzing will identify all vulnerabilities and not raise
false positives. In this regard, Blackbox fuzzing is neither sound nor complete (Ghaffarian &
Shahriari, 2017).

On the other hand, Whitebox fuzzing (indicated by the red lines in Figure 1) leverages
program analysis techniques, such as symbolic execution (Cadar & Sen, 2013; King, 1976)
and constraint solving techniques (De Moura & Bjgrner, 2008), to generate new input test
cases. Symbolic execution analyses a program and determines what inputs can explore each
execution path in the code. Whereas Blackbox fuzzing tests the specified behaviour of the
PUT, Whitebox fuzzing tests the implemented behaviour and often requires an analysis of the
source code. When applied to small code components, such as unit testing, Whitebox fuzzing is
guaranteed to generate input test cases that exercise all path conditions in the program under
test, increasing the likelihood to identify bugs and detect software vulnerabilities (Bohme et al.,
2019). In this context, Whitebox fuzzing may be sound and complete. However, the symbolic
execution and constraint solving techniques deployed in Whitebox fuzzing are computationally
expensive and do not scale well to large programs (Godefroid et al., 2008).

Greybox fuzzing combines aspects of both Blackbox and Whitebox fuzzing techniques and
may work on both binary and open-source code. Whereas Blackbox fuzzing generates input
test cases without any internal knowledge of the program under test, Greybox fuzzing lever-
ages program instrumentation to generate feedback information, such as code coverage, which
may be used to guide the input generation process. Additionally, Greybox fuzzing incorporates
some aspects of Whitebox fuzzing, such as feedback information, which provides a Greybox
fuzzer the ability to acquire some internal knowledge of the target PUT. However, Greybox
fuzzing may avoid or limit the use of computationally expensive techniques such as symbolic
execution. Similar to Blackbox fuzzing, Greybox fuzzing is neither sound nor complete. It
provides no guarantee of identifying all vulnerabilities and may still raise false vulnerabilit-
ies (Ghaffarian & Shahriari, 2017).

Greybox fuzzing approaches may be further divided into three categories: coverage-based

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature ... 78

greybox fuzzing (CGF), directed greybox fuzzing (DGF) and regression greybox fuzzing (RGF).
Whereas CGF seeks to cover all code paths in the target program under test, DGF focuses
on reaching specific target locations, therefore reducing computational resource wastage on
exploring unrelated code paths (Bohme et al., 2017). On the other hand, regression greybox
fuzzing is an advanced technique that focuses on recently changed or frequently modified
code segments (X. Zhu & Bohme, 2021). Directed greybox fuzzing has gained prominence as
an efficient approach for targeted software testing in specific scenarios such as patch testing
and bug reproduction (P. Wang et al., 2024). Most of the state-of-the art fuzzing tools are
coverage-based greybox fuzzers. Examples in this category include AFL (Zalewski, 2013),
AFLFast (Bohme et al., 2019), AFL++ (Fioraldi, Maier et al., 2020), ATTUZ (S. Zhu et al., 2024),
and FIRM-COV (Kim et al., 2021). Directed greybox fuzzing tools include ALFGo (Bohme et al.,
2017), GTFuzz (Li et al., 2020), and Hawkeye (H. Chen et al., 2018). Examples of regression
greybox fuzzers include AFLCHURN (X. Zhu & Bohme, 2021). Greybox and Whitebox fuzzing
may be combined to build hybrid fuzzing tools that leverage features of both approaches.
Examples of hybrid fuzzers include Driller (Stephens et al., 2016), Vuzzer (Rawat et al., 2017),
Angora (P. Chen & Chen, 2018) and Savior (Y. Chen et al., 2020).

The following section introduces a working example that is used to elaborate on the differ-
ent fuzzing approaches and further clarifies some of the terminology used in this study.

1.2 Working Example: PNG Parser

Listing 1 shows sample code that may be used to parse and process a Portable Network Graph-
ics (PNG) binary file. A PNG file starts with an 8-byte signature that identifies the file as
containing a PNG image, followed by sequence of chunks or sections.
The PNG signature consists of the following hexadecimal byte sequence: 0x89 0x50 0x4E
Ox47 0x0D 0x0A 0x1A 0x0A. The hexadecimal value 0x89 refers to the ordinal value of the
per mile symbol (%o) in the American Standard Code for Information Interchange (ASCII)
character set. The values 0x50, 0x4E and 0x47 are the ordinal values for character symbols P,
N and G. Similarly, 0x0D and 0x0A are values for carriage return (CR) and linefeed (LF) control
characters respectively. The value 0x1A represents the substitute (SUB) control character. The
values in the PNG signature are examples of magic bytes. The term magic byte or magic value
refers to specific bytes of the input sequence that must be matched to access certain code paths
in an input parsing program. As shown in Listing 1, a program that processes a PNG binary file
contains conditional statements that verify that the file contains the appropriate signature and
is not corrupted. Ideally, a PNG parsing program, such as the PNG_parser function in Listing 1,
may only process a PNG file with a valid signature.

#define MAX_SIZE (16 * 1024 * 1024) // 16 megabytes

bool check_png_signature(char input_buffer[], int num_bytes_to_check)
{

// PNG signature magic values
const char png_signature[8] = {
0x89, 0x50, Ox4E, 0x47,

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature ... 79

0x0D, 0Ox0A, 0x1A, 0Ox0A
F
// C1: limit to bytes [1..8]
if ((num_bytes_to_check < 1) || (num_bytes_to_check > 8)) {
return false;
}
else
// C2: check hard-coded PNG signature magic values
return (memcmp(input_buffer, png_signature, num_bytes_to_check) == 0);
}
void PNG_parser(const char *png_input_file, int buffer_size)
{
char *input_buffer = (char *)malloc(buffer_size);
if (input_buffer == NULL) {
// TODO: handle allocation error
return;
}
/).
FILE *infile = fopen(png_input_file, "rb");
// Handle file open failure
/).
int size = fread(input_buffer, 1, buffer_size, infile);
// C3: check magic bytes
if (check_png_signature(input_buffer, 8) == true) {
int chunk_start_pos = 8; // chunk start position; after signature
// BUG1: buffer over-read if input_buffer < 8 bytes » validate size first
while (chunk_start_pos < size) {
char chunk_lenbuffer[4];
memcpy(chunk_lenbuffer, input_buffer + chunk_start_pos, 4);
int chunk_length = get_big_endian(chunk_lenbuffer);
char chunkbuf[5];
int chunk_type_start_pos = chunk_start_pos + 4;
// BUG2: buffer over-read if input_buffer < 13 bytes » validate first
for (int index = 0; index < 4; index++) {
chunkbuf[index] = input_buffer[chunk_type_start_pos + index];
}
chunkbuf[4] = '"\0';
// process chunk here
VA
}
}
// close file and free buffer
/).
}

Listing 1: Sample code to parse a PNG file

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature... 80

The PNG signature is followed by a sequence of chunks/sections. Each chunk is indicated
by a chunk code or type such as IHDR, IEND, IDAT, and PLTE. The codes are 4-byte sequences
consisting of hexadecimal representation of each character symbol in the code name. For
instance, the hexadecimal values of characters I, D, A, T in the IDAT code. The chunk types/
codes may also be considered magic bytes or values that are often used in complex conditional
statements and therefore, guard the execution of certain blocks of code in a PNG file parsing
program.

A PNG file begins with an IHDR chunk and ends with an IEND chunk. Between IHDR and
IEND other chunk types, such as IDAT and PLTE, may appear multiple times. Figure 2 shows
the format of each chunk.

length (4 bytes) type/code (4 bytes) data CRC (4 bytes)

Figure 2: PNG chunk format

Each chunk starts with a 4-byte length field which specifies the size of the PNG image.
The length field is followed by a 4-byte type field (for instance IHDR, a data field, and a 4-
byte Cyclic Redundancy Check (CRC). The value of the length field depends on the size of the
image represented in the data field. The CRC is a checksum value that is calculated based
on byte sequences in the chunk type field and data field. In this regard, when parsing a PNG
file, the CRC may be used to validate that the data is not corrupted. The RFC 2083 PNG
specification (Boutell, 1997) contains a more detailed discussion of the PNG file format.

The PNG_parser function in Listing 1 attempts to first read and validate the PNG signature,
and then proceeds to extract information from the collection of chunks. The code contains
buffer over-read bugs or vulnerabilities (indicated as BUG1 and BUG2 in Listing 1). A buffer
over-read is a type of vulnerability that occurs when code execution tries to read data beyond
the end of a buffer in memory.

The check_png_signature function in Listing 1 takes an input buffer, representing a PNG
file content, and validates the signature. Since the signature refers to the first 8 bytes of the
input buffer, the first conditional statement (C7) limits the values for the second argument,
num_bytes_to_check, to between 1 and 8.

In the context of Blackbox fuzzing, a randomly generated value for num_bytes_to_check will
frequently generate a lot of values that are either greater than 8 or less than 1. In other words,
the probability of randomly generating a 4-byte integer value between 1 and 8 is small (8/231).
In this regard, the check _png_signature function often evaluates to false, and code execution
fails to reach the validation code in conditional statement C2. Blackbox fuzzing will also take a
long time to randomly generate an input that directs code execution to go beyond conditional
statement C3 in the PNG_parser function. Inevitably, it will take a longer time to identify the
bugs or vulnerabilities (BUG1 and BUG2) guarded by C3. The conditional statements C1, C2
and C3 are examples of sanity check. The term sanity check refers to security measures that
are used to verify the validity of the input and help ensure that the code processes it correctly.

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature... 81

On the other hand, a Whitebox fuzzing approach may use symbolic execution to reach and
explore the vulnerable code segments much faster than Blackbox fuzzing. A symbolic execu-
tion of the check_png_signature function identifies a symbolic value, such as a; , and assigns it
to variable num_bytes_to_check. Upon reaching the conditional statement C1, it would evalu-
ate the path constraint: (a; < 1) \/ (a; > 8) . At this point of the code execution, a; could take
any value, and symbolic execution can fork into two paths and proceed along both branches
of the if-else conditional statement C71. Each path gets assigned a copy of the program state
at the branch instruction as well as a path constraint. In this example, the path constraint is
(ay < 1) V (e > 8) for the IF branch and its negation, (a; > 1) A (a1 <8), for the ELSE
branch. Both paths can be symbolically executed independently of one another. When each
path’s execution terminates, symbolic execution computes a concrete value for a, by solving
the accumulated path constraints on each path. These concrete values can be thought of as
concrete input test cases. In this example, the constraint solver would determine that in order
to reach the else-branch of conditional statement C7, a; should be a value between 1 and 8.
This branch executes the validation code in conditional statement C2. In this regard, White-
box fuzzing generates valid input test cases significantly faster than Blackbox fuzzing and is
often able to systematically explore the vulnerable code segments (BUG1 and BUG2) guarded
by conditional statement C3. However, for large programs with nested conditional statements,
the path constraints may increase in length and complexity, making it difficult for a constraint
solver to resolve.

1.3 General Weaknesses of Blackbox, Greybox, and Whitebox Fuzzing

The general weaknesses of Blackbox, Greybox, and Whitebox fuzzing lie in their limitations
regarding scalability, accuracy, and computational cost. Blackbox fuzzing, while fast and
scalable to large programs, suffers from inefficiency in identifying bugs, as it often generates
a high volume of invalid input test cases. As illustrated in Section 1.2, randomly generated
input test cases often fail sanity checks. It may take a lot of trials to generate a test case that
reaches and executes the vulnerable code segments. This may contribute to a slower rate of
vulnerability detection. Whitebox fuzzing, which is exhaustive in exploring program paths
through symbolic execution, faces scalability issues in larger programs that contain complex
path constraints. The constraints solver may fail to resolve the path constraints. Greybox
fuzzing represents a middle ground between Blackbox and Whitebox fuzzing and uses code
coverage feedback to guide input test case generation. However, Greybox fuzzing is prone
to missing certain vulnerabilities and may raise false alarms, as it lacks the completeness of
Whitebox fuzzing.

1.4 Mutational vs Generational Fuzzing

Mutational or mutation-based fuzzing treats program inputs as a sequence or array of bytes,
and repeatedly applies byte-level mutation operators to generate new input test cases. These

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature ... 82

include bitflip & byteflip operators, arithmetic increment & decrement operators, byte inser-
tion, deletion & overwrite operators, and dictionary-based mutation operators. These operat-
ors characterise which bytes in the input byte-array to mutate and how to mutate them. For
instance, the check_png_signature in Listing 1 takes two arguments: An input_buffer array and
num_bytes_to_check integer value. As shown in Figure 3, mutational fuzzing views these two
values as a single sequence or array of bytes. In this view, the num_bytes_to_check bytes are
concatenated at the end of the input_buffer bytes, to form one byte sequence.

input_buffer num_bytes_to_check
10001001010100000100111010...0000000000...00001000

Figure 3: Sample representation of input as sequence of bytes

Mutational fuzzing repeatedly applies mutation operators to the input byte sequence. In
most mutational fuzzing tools such as AFL (Zalewski, 2013), the fuzzing process begins with
a deterministic stage followed by a havoc (non-deterministic) stage. The deterministic stage
is executed only once for each seed input. It starts at the beginning of each seed input byte
sequence, sequentially selects each byte and applies each available mutation operator. The
deterministic stage may also be used to assign initial energy to each seed in the corpus. On the
other hand, the havoc stage randomly selects a mutation operator and applies it to a randomly
selected byte location in the input byte sequence. Some fuzzers, such as libFuzzer (Serebryany,
2015) do not implement the deterministic stage and are often referred to as non-deterministic
fuzzers. However, a majority of mutational fuzzers implement both stages and apply byte-level
mutations to generate new input test cases.

Byte-level mutations are often syntax blind and therefore may generate many invalid input
test cases. For instance, randomly mutating the input_buffer bytes (in Figure 3) may alter the
signature resulting in the file content not recognisable as a PNG image. For instance, a single
bitflip operation on the second byte in Figure 3 may change it from 01010000 to 01010001
resulting in a signature that contains the character sequence QNG instead of PNG. This opera-
tion generates an invalid input that is rejected by the parsing process since it fails the validation
check. In this regard, whereas byte-level mutations may be successful for simple formats, they
generate a high number of invalid test cases for highly structured input formats such PNG files.
As another example, randomly mutating the input_buffer (in Figure 3) may distort the struc-
ture of the PNG chunks. For instance, a number of bitflip operations that changes the byte
representation for character R in the IHDR chunk code from 01010010 to 00100011 will
mutate the chunk type/code to be IHD#. Since the CRC checksum is calculated based on the
chunk type field and chunk data field, this mutation results in a corrupted IHDR chunk with
an incorrect CRC checksum. In this example, unless the PNG_parser code has sufficient sanity
checks to validate the syntactic structure of the PNG chunks, it may fail to correctly recognise
IHDR header chunk or may compute the wrong checksum. For a target parsing program with
strong sanity checks, many of the syntactically invalid inputs may be rejected or may fail to
explore and test the vulnerable code segments. To mitigate this challenge, a syntax-aware

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature ... 83

approach such as generational or grammar-based fuzzing may be used.

Generational or generation-based fuzzing (Eberlein et al., 2020; Godefroid et al., 2008),
sometimes referred to as grammar-based fuzzing, generates input test cases from an input lan-
guage specification such as grammar or a set of rules. Its main advantage is that it guarantees
that all generated test cases are syntactically valid hence the fuzzing process does not waste
computational resources parsing invalid inputs. However, since most programs lack a formal
grammar of well-formed inputs, mutational fuzzing techniques are widely adopted.

Most fuzzing tools adopt mutation-based strategies and repeatedly apply syntax-blind byte-
level mutations. As already noted, mutational fuzzing may generate a high number of invalid
test cases. To mitigate this challenge, dictionary-based mutation was introduced to make-
up for the grammar-blind nature of AFL (Zalewski, 2015). Subsequently, dictionary-based
mutation has been implemented in other state-of-the-art fuzzers such as libFuzzer (Serebryany,
2015) and Honggfuzz (Swiecki & Grobert, 2025). In Greybox fuzzing, the feedback provided
by the compile-time instrumentation makes it possible to identify syntax tokens in some types
of files, and further detect that certain combinations of terms constitute a valid grammar
of the input test cases. In this regard, fuzzing dictionaries have been shown to enable the
fuzzer to rapidly reconstruct the grammar of highly verbose languages such as XML, SQL and
JavaScript (Zalewski, 2015).

A fuzzing dictionary is a text file that contains a collection of commonly occurring key-
words, strings, interesting byte sequences and magic bytes/values. As discussed in the working
example in Section 1.2, magic bytes such as the PNG signature, 0x89 0x50 0x4E 0x47 0x0D

0x0A 0x1A 0x0A and chunk codes (IHDR, IEND, IDAT, PLTE), may be extracted to a fuzzing
dictionary. The Google Fuzzing Dictionaries (Google, 2025) repository provides examples of
fuzzing dictionary for different file formats.

1.5 Dictionary-Based Mutation

A fuzzing dictionary consists of a list of basic syntax tokens. These tokens may be manually
extracted or automatically identified during the fuzzing process. Most fuzzing frameworks
implement two types of dictionary-based mutation operators: insert and overwrite. Whereas
other fuzzing tools may use different naming conventions, in AFL these operators are called
user extras operator and auto extras operator respectively. The AFL user extras operator selects
a token from a fuzzing dictionary and inserts its bytes into the input test case. The AFL auto
extras operator overwrites bytes in the input test case with a dictionary token recognized and
automatically extracted by AFL during deterministic stage. Other coverage-based mutational
fuzzers such as libFuzzer and Honggfuzz implement similar mechanisms for dictionary-based
mutation. While AFL performs dictionary-based operations during the deterministic stage as
well-as havoc stage of fuzzing, libFuzzer is non-deterministic and performs dictionary-based
mutation only during the random havoc stage. The general pseudocode for dictionary-based
mutation is shown in Algorithm 1 which is adapted from Shastry et al. (2017).

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature... 84

function DICTIONARY_FUZZ(input_bytes, dictionary, deterministic)
dict_token ¢ selectRandomTokenFrom(dictionary)

if deterministic = TRUE then

for each offset in input_bytes do
FUZZ_TOKEN_OFFSET(input_bytes, dict_token, offset)

end for

else
offset ¢ selectRandomOffsetPosition(sizeOf(input_bytes))
FUZZ_TOKEN_OFFSET(input_bytes, dict_token, offset)

end if

end function

function FUZZ_TOKEN_OFFSET(input_bytes, dict_token, offset)

overWriteFromOffsetPosition(input_bytes, offset, dict_token)
runProgramUnderTest(program, input_bytes)

insertTokenAtOffsetPosition(input_bytes, offset, dict_token)
runProgramUnderTest(program, input_bytes)

end function

Algorithm 1: Pseudocode for Dictionary-based Mutation

Algorithm 1 is implemented in most Greybox fuzzers such as AFL, Honggfuzz and libFuzzer.
During dictionary-based mutation, a token is selected from the dictionary and inserted between
bytes or written over byte sequences of the same length. Whereas such dictionary-based muta-
tions can generate syntactically valid input test cases, they can also destroy the syntax structure
of the input tests case. In this regard, a study (J. Wang et al., 2019) conducted in 2019 pro-
posed an enhanced dictionary-based algorithm that identifies an ideal location to insert or
overwrite bytes sequences and therefore preserve syntax structure. The results of the study
provide evidence that dictionary-based mutations help improve validity of generated input
test cases, resulting in improved performance of fuzz testing. The performance of fuzzing may
be measured in terms of effectiveness and efficiency. The term effectiveness refers to the total
number of vulnerabilities discovered, and the term efficiency refers to the rate at which vul-
nerabilities are discovered. Whereas counting the number of discovered vulnerabilities is an
ideal metric for fuzzing effectiveness, it is not always feasible. For instance, a fuzz testing run
that does not discover any unknown bugs or vulnerabilities is not necessarily ineffective. As a
result, proxy metrics such as path or code coverage are often used as approximate measures of
effectiveness. That is, a fuzzing technique that explores a high proportion of code execution
paths is more likely to a discover a bug or vulnerability and therefore could be considered
highly effective. Similarly, low code coverage reduces the likelihood of bug or vulnerability
discovery.

The focus of this study is on dictionary-based mutation as a targeted approach to enhance
fuzz testing efficiency and effectiveness. First, we interrogate the evidence that dictionary-

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature ... 85

based mutation has an impact on the fuzzing process. We further investigate the impact of
mutation operator selection and scheduling. The study objective and research questions are
presented in Section 1.6.

1.6 Objective and Research Questions

The primary objective of this study is to investigate the role and impact of dictionary-based
mutations in generating valid input test cases for fuzz testing. It reports on strategies and tech-
niques that have been employed in previous studies to extract fuzzing dictionary tokens from
the codebase of the program under test. Furthermore, the review examines how dictionary-
based mutations have been used to improve the effectiveness and efficiency of the fuzzing
process in the context of other optimisation techniques such as mutation operator selection
and scheduling. In order to achieve this objective, the review process is guided by the follow-
ing research questions (RQ):

RQ1: How does dictionary-based mutation impact fuzz testing effectiveness and efficiency?

RQ2: What approaches and techniques can be used to extract fuzzing dictionary tokens from
the codebase of the program under test?

RQ3: What are the limitations of dictionary-based mutations in fuzz testing?

RQ4: What strategies can be used to optimize dictionary-based mutation operator selection
and scheduling?

RQ5: How can alternative augmentation strategies be deployed to resolve the limitations of
dictionary-based mutations?

We chose RQ1 to examine the impact of dictionary-based mutations on the fuzz testing
process. RQ2 expands from RQ1 and focuses on different approaches, and the techniques,
which have been applied to extract fuzzing dictionary tokens. RQ3 seeks to identify limitations
of dictionary-based fuzzing and articulate research gaps. In RQ4 we investigate strategies
that have been used to optimize dictionary mutation operator selection and scheduling. We
further critically analyse how dictionary-based mutations may be scheduled more optimally
to positively impact the fuzzing efficiency and effectiveness. RQ5 seeks to explore alternative
strategies that may be deployed to address the limitations of dictionary-based mutation.

The rest of the paper is structured as follows: Section 2 presents the research methodology.
A discussion of the results follows in Section 3, and we present future works and conclusion
in Sections 4 and 5 respectively.

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature ... 86

2 METHODOLOGY

A Systematic Literature Review (SLR) was conducted following the guidelines proposed by
Kitchenham (2007). It is guided by the objective and the research questions. The SLR processes
are discussed in this section. Furthermore, this section details the search strategy along with
the inclusion and exclusion criteria used to identify the relevant literature.

2.1 Search Query

In the systematic review of literature, relevant primary studies were extracted based on the
following search terms: fuzzing, fuzz testing, mutation, and dictionary. We combined
the search terms to create the following search string: (“fuzzing” OR “fuzz testing”) AND
“mutation” AND “dictionary”. Inclusion and exclusion criteria were used to filter the query
results.

2.2 Information Sources

The primary sources used for the literature search included the following databases: Associ-
ation of Computing Machinery (ACM) Digital Library, IEEE Explore and ScienceDirect. The
Google scholar database search engine was used to find additional publications from proceed-
ings of top-level conferences on security and software engineering such as the USENIX Security
Symposium, and the Network and Distributed System Security Symposium (NDSS). It is worth
noting that a significant number of publications on fuzz testing are discussed in the USENIX
Security symposium.

2.3 Inclusion and Exclusion Criteria

The main inclusion criterion is that only peer reviewed publications are considered for this
review. In addition, the publication must be written in English, its content must cover the
scope of the search terms and must have been published between the years 2010 and 2024.
The year range is based on the observation that a significant large number of publications on
fuzz testing appeared during that period. In the same period, current state-of-the-art fuzzing
tools such as AFL and libFuzzer were developed. Furthermore, only primary studies appearing
in journals and conference papers were included in this review. Therefore, book chapters,
literature review papers, editorials, comments, conference keynotes and short papers (less
than 4 pages) were all excluded.

2.4 Screening of Publications

In addition to the inclusion and exclusion criteria, each paper publication was screened based
on the title and abstract to determine its relevance with regards to the objective of the literat-
ure review. Publications with irrelevant content were removed. The focus was on application

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature... 87

software file-based fuzzing publications, as opposed to other fuzzing domains such as kernel
fuzzing, network protocol fuzzing and parametric fuzzing. In this regard, we excluded public-
ations focusing on fuzzing interfaces on hardware, central processing unit (CPU), embedded
devices, Internet-of-Things (IoT), Industrial control systems, Android systems, kernels and net-
work protocols.

2.5 Assessment of Literature search

The quality assessment criteria (QAC) that were used to screen each publication is shown in
Table 1. It is based on the publication, methodology and whether it addresses specific aspects
of dictionary-assisted mutational fuzzing. The overall design of the assessment form was ad-
apted from a study conducted by Raharjana et al. (2021) by formulating specific questions
appropriate for this review.

Table 1: Quality Assessment Form

Item Quality Assessment Criteria (QAC) Score and Description

QAC1 Is the goal of the research study clearly stated? -1: NO, 0: Partially, 1: YES
QAC2 s the research methodology described in detail? -1: NO, 0: Partially, 1: YES
QAC3 Does the study address specific aspects of dictionary-based mutation? -1: NO, 0: Partially, 1: YES

QAC4 s the proposed dictionary-based mutation strategy or intervention proven -1: NO, O: Partially, 1: YES
to work or sufficiently evaluated?

QAC5 Do other scholarly publications reference the study? -1: NO, 0: Partially, 1: YES

A Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (Page
et al., 2021) flow diagram was used to summarise the results of the screening process and
assessment criteria, as shown in Figure 4.

Based on the inclusion and exclusion criteria, the database search engines (ACM Digital
Library, IEEE Xplore, and ScienceDirect) were configured to retrieve only Journal and confer-
ence papers. The initial ACM Digital Library search resulted in 203 papers, the IEEE Explore
search resulted in 211 papers, and ScienceDirect search resulted in 31 papers. The papers
were read in more detail, and some were removed because the content did not match the
main objective and scope of this review. For instance, some publications did not address any
aspect of dictionary-based mutation.

Of the retrieved studies, twenty-five (25) met the inclusion criteria and were judged suit-
able to address the research questions. Each of these publications articulated a clear research
objective, described the methodology in detail, and were cited in subsequent scholarly lit-
erature publications. Seven of the twenty-five studies specifically investigated methods for
extracting a fuzzing dictionary from a target program’s codebase.

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature ... 88

Identification of studies via databases and registers
c Records identified from™: Records removed before screening:
2 ScienceDirect (n=31) Duplicates removed (n=7)
o ACM Digital Library (n=203) Records marked as
= IEEE Xplore (n=211) ineligible by
c automation tools:
§ Total Records (n=445) ACM Digital Library (n=97)
Records screened: Records excluded:
ScienceDirect (n=24) (as per screening criteria)
ACM Digital Library (n=106) ScienceDirect (n=12)
IEEE Xplore (n=211) ACM Digital Library (n=51)
IEEE Xplore (n=111)
Total Records (n=341)
Total Records (n=174)
(=)}
(=
c
Q
5 R t t retrieved
O oval- eports not retrieved:
(7] ReE)r?Et1ses7o)ught for retrieval: (as per assessment criteria)
- (n=62)
Reports assessed for eligibility: Reports excluded:
(n=105) (n=80)
3
= Studies included in review:
S (n=25)
f=
=

Figure 4: PRISMA Flow Diagram for Literature Search Results

2.6 Literature Data Extraction and Synthesis

To facilitate a synthesis of the publications, literature data was extracted and summarised
using a data extraction form that summarises information appropriate to answering each of
the review questions. For each reviewed publication, we recorded information such as the
research focus, method, design, evaluation metric and limitations identified.

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature ... 89

3 RESULTS AND DISCUSSION

Using the research questions (RQ) as a guide, and based on data extracted in Section 2.6, this
section provides an analysis and synthesis of the identified publications.

3.1 Impact of dictionary-based mutation on fuzz testing effectiveness and
efficiency (RQ1)

State of the art fuzzing tools such as AFL (Zalewski, 2015) have provided anecdotal evidence
that user defined fuzzing dictionaries can improve code coverage. The implementation of
both AFL and libFuzzer provide a collection of predefined general-purpose fuzzing dictionaries.
However, these dictionaries are manually extracted, by application domain experts, from the
codebase of the program under test. The Google Dictionaries project (Google, 2025) also
maintains a collection of general-purpose fuzzing dictionaries and makes them available as
open source. A few studies have evaluated the impact of target specific fuzzing dictionaries
that are automatically extracted from the codebase of the program under test (Ebrahim et
al., 2022; Shastry et al., 2017; Wu et al., 2025). An evaluation of results from these studies
has shown that target specific fuzzing dictionaries are more effective than general-purpose
dictionaries.

The FuzzingDriver (Ebrahim et al., 2022) is one of the latest frameworks proposed to auto-
matically extract fuzzing dictionary tokens. It can be executed before the fuzzing process runs,
and therefore, does not add any computational overhead to the fuzzing process. The Fuzz-
ingDriver is generic and therefore, may be used to extract dictionary tokens from any target
program. An evaluation of the FuzzingDriver extracted dictionaries, against general-purpose
Google fuzzing dictionaries (Google, 2025), showed improved code coverage. According to the
developers of the FuzzingDriver framework, the efficacy of the FuzzingDriver on bug coverage
is yet to be assessed.

On the same note, the Customized Dictionary Fuzzing (CDFUZZ) (Wu et al., 2025) tool eval-
uated the impact of target specific dictionaries extracted using the FuzzingDriver. The study
concluded that the dictionary-based mutation strategy improved fuzzing effectiveness and per-
formed better than other fuzzing exploration strategies such as input-to-state correspondence
proposed in REDQUEEN (Aschermann et al., 2019) fuzzing tool, the QSYM (Yun et al., 2018)
SMT-solver based concolic engine, and gradient-based algorithm proposed in Angora (P. Chen
& Chen, 2018).

The Orthrus framework (Shastry et al., 2017) proposed a mechanism that uses static com-
pile-time analysis to extract fuzzing dictionary tokens. On evaluation of tcpdump network
protocol, the Orthrus dictionary showed up to 10% improvement on code coverage compared
to baseline AFL, and up to 8% improvement compared to baseline AFLFast (Bohme et al.,
2019). Similarly, an evaluation on Deep Network Traffic Inspection (nDPI) showed up to
15% and 5% improvement compared to baseline AFL and AFLFast respectively. The results of
the evaluation also showed improved bug coverage. Although Orthrus was originally tested

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature... 90

only on network protocol messages, the authors indicate that its design could be extended to
support file format parser applications such as PNG parsers.

In a study conducted in 2020, Mathis et al. proposed a fuzzing tool called LFuzzer that
extends Dynamic Taint Analysis (DTA) to not only automatically infer fuzzing tokens, but also
generate seed input test cases. DTA is a data flow tracking technique that is widely used for
vulnerability analysis. It tracks tainted data during program execution and therefore, provides
insight into how data flows through the program at runtime. The set of tokens inferred while
using LFuzzer can be added to a fuzzing dictionary. The study also evaluated the LFuzzer
extracted dictionary on highly structured input formats such as JSON and LISP. The findings
indicate that, on average, the proposed approach achieves up to 17% more code coverage
compared to baseline AFL.

Another study (Bundt et al., 2021) was conducted to explore the difference between fuzzing
synthetic bugs and real-world bugs. The study concluded that coverage-guided fuzzers can
effectively discover synthetic bugs in a LAVA (Dolan-Gavitt et al., 2016) generated synthetic
dataset with techniques such as dictionary-based mutation and comparison splitting. The study
utilised a dictionary of constant values parsed from a dis-assembly of the target program.

In 2021 Metzman et al. proposed and implemented a benchmarking platform and evaluated
several fuzzing techniques. On the aspects of fuzzing dictionary, the results reflected minor
differences between fuzzing with or without dictionary-based mutation enabled.

As highlighted in this section, there exist a limited number of research studies that provide
empirical evidence of the impact of dictionary-based mutation on the efficiency and effective-
ness of the fuzzing process. Moreover, a few studies provide details of how to automatically
extract dictionary tokens from the codebase of the program under test. Section 3.2 looks at
different strategies that have been used to extract fuzzing dictionary tokens.

3.2 Strategies for extracting fuzzing dictionary tokens from the program
under test code base (RQ2)

The task of generating a dictionary from the codebase of the target PUT is strenuous and time
consuming (Ebrahim et al., 2022). As a result, a lot of fuzzing tools and frameworks use
predefined general-purpose dictionaries such as those provided by Google Fuzzing Dictionar-
ies (Google, 2025). Furthermore, the source code release of AFL contains generic dictionaries
for many common file formats which can be used in fuzzing runs. Moreover libFuzzer and
Honggfuzz support AFL dictionaries and OSS-fuzz (Ding & Goues, 2021) integrates dictionar-
ies in some of its fuzzing projects. While these generic dictionaries may improve code coverage,
they lack target-specific information, and the impact is not optimised (Ebrahim et al., 2022).
Additionally, manual extraction of a fuzzing dictionary requires expert knowledge. Therefore,
in real world applications, there is a need to automatically generate target specific fuzzing
dictionaries. Table 2 summarises the different approaches used to extract dictionary tokens.
The most basic strategy to create a fuzzing dictionary is to scrape through the source code
of the target PUT and extract constants and string literals to a fuzzing dictionary. Some stud-

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature... 91
Table 2: Summary of Token Extraction Methods
EM#¢ Method / Strategy Fuzzing Tool S/BP
EM_01 Domain expert manually extracts dictionary tokens AFL S
libFuzzer
EM_02 Use byte and string comparison to identify tokens AFL B
EM_03 Auto-detect tokens during deterministic bitflip stage by looking for groups of bits that ~ AFL B
always produce the same coverage even after mutation
EM_04 Scrape the application binary code to create a dictionary AFL & Thompson Sampling B
Deep Reinforcement Learning
CONFETTI
EM_05 Syntactically extract input fragments from program abstract syntax tree (AST) and Orthrus S
semantically extract conjunctions of input fragments from the program control flow
graph (CFG) by statically analysing program data flow and control flows.
EM_06 Use CodeQL language queries to extract valuable information such as commonly FuzzingDriver S
occurring keywords, strings, and arguments of comparison functions
EM_07 Use context sensitive data-flow analysis; leverage Guard Tokens; Extract strings from GTFuzz S
comparison functions and variable definitions
EM_08 Auto-tokens - extracts tokens from instructions and comparison function AFL++ S
libAFL
EM_09 Extract tokens from comparison instructions and functions with immediate values libAFL B
EM_10 Extracts all strings from binary codebase and selects strings used as arguments to ~FIRM-COV B
library API and add to dictionary
EM_11 Learning input tokens; Explores branches of lexical analysis and extract dictionary = LFuzzer B
tokens;
EM_12 Uses extended dynamic tainting of implicit data transformation to produce/infer dic- LFuzzer B
tionary tokens and seed input test cases.
EM_13 Leverage Input-to-state(I2S) correspondence and add all values that contain non-zero FairFuzz B
or non-0xff bytes to a specific fuzzing dictionary REDQUEEN
EM_14 During compilation, extract all constant string comparison function parameters to a AFL++ S
file; Need link-time optimisation (LTO) to pass auto-tokens with no overhead; libAFL
EM_15 Compile subject into human readable bit code format, and then extract string literals = LFuzzer B
by iterating over the global values of the bit code file and writing the global strings to
fuzzing dictionary
EM_16 Use Linux strings tool to extract printable strings from a binary file and use output as Deployed in older fuzzing B
dictionary frameworks
EM_17 Using ANGR binary analysis framework to help fuzzer identify possible magic values T-Fuzz B
in the program under test
EM_18 Using hexadecimal editors, such as 010Editor, to extract interesting byte sequences AFLSmart B
(tokens) from input file format
[continued ...]

9 EM = Extraction Method
b Source / Binary

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature ... 92

Table 2: Continued...

EM# Method / Strategy Fuzzing Tool S/B
EM_19 Use AFL LLVM DICT2FILE= /absolute/path/file.txt and during compilation all AFL++ S
constant string compare parameters will be written to this file and later used as fuzzing
dictionary.
EM_20 Using clang-sdict that performs a front-end pass on source code collecting constant Statistical Evaluation S

string tokens used in potentially data-dependent control flow.

EM_21 Use CodeQL to extract dictionary for each seed instead of overall dictionary from all CDFUZZ S
seeds.

ies (Bottinger et al., 2018; Karamcheti et al., 2018; Kukucka et al., 2022) deployed this strategy.
The dictionary generated in this way may contain less useful strings such as comments in
the source code. In cases where source code is not available, another approach is to scrape
dictionary tokens from the application binary code (Kukucka et al., 2022). In addition to
manual methods, strategies for extracting fuzzing dictionary tokens range from scraping con-
stant strings from input files, to using binary analysis frameworks such as ANGR!, 010Editor?,
and Linux strings® tool.

Auto-token detection strategies are used in fuzzers such as AFL, libFuzzer, AFL++ (Fior-
aldi, Maier et al., 2020) and libAFL (Fioraldi et al., 2022). Whereas AFL auto-detects tokens
during deterministic bitflip mutation, other fuzzers auto-detect tokens from instructions and
comparison functions (Fioraldi, Maier et al., 2020).

In an experimental framework called Orthrus, Shastry et al. (2017) used static syntactic
analysis to automatically identify input fragments from the target program abstract syntax
trees (AST). These input fragments can be added to a fuzzing dictionary. Furthermore, the
framework used static semantic analysis to identify conjunctions of input fragments from the
target PUT control flow graph (CFG). These were also added to the fuzzing dictionary.

A study conducted by Kim et al. (2021) outlined a detailed algorithm that first extracts
all readable string constants from the data section of the binary input file, then identifies and
constructs a list of addresses of the extracted strings. This is followed by a series of steps that
include reference mining (identifying instructions that reference a particular address), fine-
grained instructions (identifying usage of referenced instruction), and library function analysis
(checking if referenced string was used in custom defined functions). Based on the library
function analysis, all strings used in the custom function are added to a fuzzing dictionary.

Another approach is to instrument comparison functions like strcmp in the target program
to extract and add tokens to a dictionary. This approach is deployed in fuzzing tools such as
AFL++, libFuzzer, Entropic (Bohme & Manes, 2020) and Honggfuzz.

A couple of other studies (Ebrahim et al., 2022; Li et al., 2020; Wu et al., 2025) proposed

! https://github.com/angr/angr
2 https://www.sweetscape.com/010editor/
3 https://www.linux.org/docs/man1/strings.html

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature ... 93

more advanced strategies and algorithms to automate token extraction. The FuzzingDriver (Eb-
rahim et al., 2022) is one of the latest dictionary token generation tools for coverage-based
grey box fuzzers. It uses CodeQL* queries that can be executed before the fuzzing process
begins and therefore, does not add any overhead to the fuzzing process. An evaluation of
the FuzzingDriver extracted dictionaries, against Google dictionaries, shows improved code
coverage.

In another study, the CDFUZZ (Wu et al., 2025) fuzzer used a similar approach to Fuzz-
ingDriver, however, instead of extracting overall dictionary from all seeds, a customised dic-
tionary can be extracted for each seed. Compared to FuzzingDriver extracted dictionaries, the
CDFUZZ dictionaries showed up to 18.4% improvement in code coverage.

In another experimental study, Mathis et al. (2020) proposed the LFuzzer technique that
extends dynamic tainting to track explicit data flows, as well as taint implicitly converted
data while minimizing associated path explosions. The technique introduces a mechanism
that makes it possible to infer a set of tokens which can be added to the fuzzing dictionary. In
addition, the implementation of the proposed technique makes it possible to infer seed input
from source code of the target program under test.

Based on the concept of guard tokens, an experimental study conducted by Li et al. (2020)
proposed and implemented a fuzzer called GTFuzz, which may be used to extract Guard Tokens
(GTs) to direct fuzzing towards specific target locations. Its evaluation outperforms state-of-
the-art fuzzers in reaching target location and exposing bugs.

Other state of the art fuzzers (Fioraldi, Maier et al., 2020; Fioraldi et al., 2022; Serebryany,
2015; Zalewski, 2013) deploy different mechanisms to learn input tokens during the fuzzing
process. Whereas AFL (Zalewski, 2013) implementation supports user-specified dictionaries,
the fuzzer also provides mechanisms to auto-detect dictionary tokens during bitflip operator
mutation, in the deterministic stage. This is achieved by looking for groups of bits that, when
mutated, always produce the same code coverage (Fioraldi et al., 2023). This may indicate
that they are a significant part of a magic byte/value. Once these values are detected, AFL
proceeds in the havoc stage to mutate the input test cases by replacing and inserting tokens
from the user-specified and the auto-generated list of tokens. Some fuzzing frameworks extract
tokens at compilation or instrumentation time (Fioraldi et al., 2022).

The libAFL framework (Fioraldi et al., 2022) proposed an auto tokens technique that can
only be used by instrumenting the PUT with a link-time optimisation (LTO) pass. The pass
extracts tokens from comparison instructions and functions and encodes them. A libAFL based
fuzzer can then extract these tokens and add them to a fuzzing dictionary.

Sections 3.1 and 3.2 highlighted the impact and benefits of dictionary-based mutation, and
the section that follows summarises its observed limitations.

4 https://codeql.github.com/

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature... 94

3.3 Limitations of dictionary-based mutational fuzzing (RQ3)

The paper on AFLSmart (Pham et al., 2021) notes that both dictionary-based and taint-based
mutation approaches fail to address the problem of how to mutate a high-level representation
of an input file, such as an abstract syntax tree (AST), rather than its bit-level representation.
Consequently, a strategy combining both bit-level and chunk-level mutations was proposed.

The paper on WEIZZ fuzzing tool (Fioraldi, D’Elia & Coppa, 2020) observes that comparison
patterns such as magic values/bytes and checksum are difficult to overcome through random
and blind byte-level mutations. While format-specific dictionaries may help with magic val-
ues/bytes, the fuzzer still needs to determine where to insert such values when applying a
dictionary mutation operator.

In a study by You et al. (2019), it was observed that while some sanity checks can be
satisfied by inserting dictionary tokens during random mutation, other sanity checks are very
difficult to resolve using this approach. In this regard, alternative methods such as gradient
mutation (P. Chen & Chen, 2018) were recommended. The study further proposes a seedless
mutational fuzzing method that aims to mitigate the shortcomings of other approaches, such as
dictionary mutation and gradient mutation, by generating input test cases from scratch without
any seeds. This approach was evaluated, and it demonstrated effectiveness in resolving some
but not all sanity check comparisons.

In an experimental study Even-Mendoza et al. (2023) developed a coverage-based muta-
tional fuzzer for C compilers and parsers, it was reported that the use of fuzzing dictionaries
could be effective in preserving static validity of mutated code. However, dictionary-based
mutational fuzzing for strongly typed languages produces a high rate of invalid programs. In
this regard, generational or grammar-based fuzzing and hybrid fuzzing approaches are more
appropriate for language compilers.

Whereas mutational fuzzing tools such as AFL have demonstrated the benefits of dictionary-
based mutation when dealing with path constraints, this approach fails to address verbose
input files (Pham et al., 2021).

Also, the impact of dictionary-based mutation on fuzzing performance may be confoun-
ded by other optimisation parameters such as operator selection and scheduling. Section 3.4
provides an overview of these fuzzing parameters.

3.4 Optimisation of dictionary-based mutation operator selection and
scheduling (RQ4)

On each fuzz iteration, a mutational fuzzer uses a mutation scheduler to select operators from
a predefined set. Typically, this set includes dictionary-based mutation operators such as
Insert and Overwrite operators. Instead of directly returning a mutation operator, the mutation
scheduler yields a probability distribution of the number of interesting test cases generated
by each predefined operator. During the havoc stage, the fuzzer prioritises operator selection
following this distribution (Lyu et al., 2019). That is, operators that consistently generate
input test cases that increase code coverage are given higher priority than those with minimal

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature ... 95

impact on code coverage. Many baseline fuzzers, including AFL and libFuzzer, assume a
uniform probability distribution, and they grant each operator an equal chance to be randomly
selected for the next mutation. Several studies have focused on the optimisation of mutation
scheduling to improve fuzzing efficiency and effectiveness. A few of these studies are briefly
summarised in this section.

The MOPT fuzzer (Lyu et al., 2019) proposed a customised particles swarm optimisation
algorithm to establish an optimal selection probability distribution of operators. The evalu-
ation of MOPT showed up to 170% improvement in finding new vulnerabilities than baseline
AFL.

Another experimental study (Karamcheti et al., 2018) proposed a machine learning ap-
proach and used a Thompson Sampling bandit-based optimisation algorithm to adaptively
learn the probability distribution over mutation operators. The algorithm was implemented
on AFL fuzzer, and its evaluation demonstrated higher code coverage than baseline AFL.

Table 3 provides a summary of some of the commonly used fuzzing tools and notes the
dictionary extraction method used and mutation operator distribution proposed or adopted.
Moreover, we note the baseline fuzzer and the fuzzer type: Coverage-based Greybox Fuzzer
(CGF), Directed Greybox Fuzzer (DGF) and Regression Greybox Fuzzer (RGF).

Notwithstanding some evidence (Lyu et al., 2019) that mutation operator selection and
scheduling can significantly improve fuzzing efficiency and effectiveness, 58% of the fuzzers
identified in Table 3 (excluding the frameworks such a FuzzingDriver, AFL++, libAFL and CD-
FUZZ) adapt the random uniform distribution model. The remaining 42% (including MOPT,
FIRM-COV, GTFuzz, Deep Reinforcement fuzzing, and AFL with Thompson Sampling) imple-
ment improved mutation operator distributions mechanisms.

The MOPT fuzzer proposed a Particle Swarm Optimisation (PSO)-based algorithm that eval-
uates the efficiency of candidate mutation operators and adjusts their selection probability to-
wards the optimal distribution. This approach was adapted in other fuzzing frameworks, such
as AFL++ and FIRM_COV, and the results showed general improvement in fuzzing performance.
In 2018, Bottinger et al. (2018) proposed a reinforcement learning based distribution that res-
ulted in significant improvement compared to random uniform distribution. This approach
builds on other studies (Blum et al., 2017; Drozd & Wagner, 2018) that also demonstrated
that mutator operator selection can benefit from automated feature engineering based on deep
learning techniques. Moreover, Karamcheti et al. (2018) proposed a multi-armed-bandit based
algorithm that deployed Thompson Sampling based algorithm to optimise mutation operator
selection. However, the evaluation of different mutation operator distributions focused on
overall performance and not necessarily specific on scheduling of dictionary-based mutation
operations. As shown in Table 3, only AFL and GTFuzz fuzzing tools made a partial attempt
on how to prioritise and schedule dictionary-based mutations.

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature ... 96
Table 3: Summary of Mutation Operator Distributions
Fuzzing Tool Type Baseline Dictionary Mutation Operator Distribution Specific on
Fuzzer Extraction dictionary-
Strategy* based
mutation
operator
selection and
scheduling
1 AFL CGF - EM_01 Random Uniform Model Partial;
EM_02 Deterministic
EM_03 stage
2 libFuzzer CGF - EM_01 Random Uniform Model No
3 Orthrus CGF AFL EM_05 Same as user-specified baseline fuzzer No
4 FuzzingDriver Framework Generic: user EM_06 Same as baseline fuzzer No
for CGF specified
5 LFuzzer PFuzzer EM_11 Same as baseline fuzzer No
EM_12
EM_15
6 AFL with CGF AFL EM_04 Bernoulli distribution No
Thompson
Sampling
7 FairFuzz CGF AFL EM_13 Same as baseline fuzzer with light No
mutation masking strategy
8 GTFuzz DGF AFLGO EM_07 Improve baseline distribution and Partial
applies only dictionary-related
mutation on low GT
9 AFLSmart CGF AFL EM_18 Same as baseline; Applies both bit-level No
and chunk-level mutation operators
10 FIRM-COV CGF AFL EM_10 Particle Swarm Optimisation-based No
probability distribution;
11 MOPT CGF Generic: user- Same as Particle Swarm Optimisation-based No
specified baseline probability distribution
fuzzer
12 Deep CGF Generic: user- EM_04 Reinforcement Learning-based No
Reinforcement specified distribution
fuzzing
13 AFL++ Framework Generic: EM_08 Same as baseline fuzzer plus Custom No
for CGF extends AFLFast, EM_14 Mutator API; MOPT Mutator
MOPT EM_19
14 REDQUEEN CGF - EM_13 Same as baseline fuzzer No
15 libAFL Framework Generic: user- EM_09 Same as baseline fuzzer No
for CGF specified EM_08
EM_14
16 CDFUZZ Framework Generic EM_21 Same as baseline fuzzer No
for CGF

2 from Table 2

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature... 97

3.5 Alternative augmentation strategies to address the limitations of
dictionary-based mutational fuzzing (RQ5)

According to Gan et al. (2018) the core questions to consider when fuzzing is where to mutate
and what to mutate. Regarding magic bytes and checksum values, these fundamental ques-
tions are most relevant, and fuzzing tools have used different techniques to address them.
Vuzzer (Rawat et al., 2017) uses data flow and control-flow information to infer bytes to
mutate, and Taintscope (T. Wang et al., 2010) uses taint-analysis to identify and fix checksum
bytes. On the question of what value to use for mutation, Vuzzer employs dynamic taint ana-
lysis to infer interesting values and LAF-intel implements mechanisms to split long string or
constant comparison and this enables the fuzzer to find matching mutation values. However,
dynamic taint analysis is computationally expensive. Alternative strategies to address path
constraints are used, and they include symbolic execution. While symbolic execution is sound
and complete, it is not scalable to large programs, consequently some studies (P. Chen & Chen,
2018) have proposed techniques to address the limitations of symbolic execution.

A study by P. Chen and Chen (2018) proposed a mutational fuzzing tool called Angora
that solved path constraints with symbolic execution. Angora leverages techniques such as
scalable byte-level taint-tracking, context-sensitive branch count and input length exploration.
To resolve path constraints, Angora avoids symbolic execution, and instead deploys a search-
based gradient descent algorithm. The proposed strategy was evaluated on the LAVA synthetic
bugs and demonstrated improved code and bug coverage.

4 GAPS IDENTIFIED AND FUTURE WORKS

Studies show anecdotal evidence that dictionary-based mutation approximates the syntactic
structure of input test cases, and therefore, improves validity of generated input test cases.
However, there is limited empirical evidence to quantify the proportion of any observed sub-
sequent improvement in fuzzing efficiency that can be attributed to the dictionary-based muta-
tion strategy. Such improvement may be a result of other confounding factors and optimisa-
tion strategies such as seed prioritization, power scheduling and mutation operator scheduling.
Whereas fuzzing effectiveness and efficiency are widely used evaluation metrics, the random
nature of fuzzing makes it difficult to attribute any improvement to one optimisation strategy.
Based on the literature reviewed, very few studies report on adequate statistical methods to
evaluate the impact of these different optimisation strategies. In the case of mutation operator
scheduling, most studies report on general improvement resulting from the proposed mutation
operator selection algorithms such as particle swarm optimisation-based algorithms and rein-
forcement learning based algorithms. In this regard, it is not clear what proportion of the
improvement may be attributable to dictionary-based mutation operators.

To address the evidence gap, we therefore, recommend more empirical studies that are
supported by sound statistical evaluation. These studies would seek to identify and assess the
interplay between different optimisation strategies despite the random nature of the fuzzing

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature ... 98

process. Some studies (Shastry, 2018; Wu et al., 2025) have recommended non-parametric
statistical test methods, such as the non-parametric Mann-Whitney U test and Vargha (Mac-
Farland & Yates, 2016) and Delaney’s A12 statistic (Arcuri & Briand, 2014), which may be
adopted and used to evaluate the impact of different optimisation strategies while accounting
for the random nature of fuzzing.

5 CONCLUSION

In this study, we conducted a systematic review on the impact of dictionary-based mutation
strategy on the Greybox fuzz testing process. To the best of our knowledge, this work con-
stitutes the first systematic review addressing this topic. The reviewed literature agrees on
anecdotal evidence that the dictionary-based mutation strategy preserves the syntactic struc-
ture of mutated test cases and therefore, improves the validity of generated input test cases.
Subsequently, more valid input tests cases contribute to improved fuzzing performance. In
the context of other optimisation strategies such as mutation operator scheduling, we further
observe the paucity of empirical evidence to determine what proportion of the observed im-
provement can be attributed to the dictionary-based mutation strategy alone. We, therefore,
conclude that there is a need to conduct more experimental studies that perform statistically
sound evaluation on the impact of dictionary-based mutation strategy, considering the inher-
ent random nature of fuzzing and accounting for other optimisation strategies.

References

Arcuri, A., & Briand, L. (2014). A hitchhiker’s guide to statistical tests for assessing randomized
algorithms in software engineering. Software Testing, Verification and Reliability, 24(3),
219-250. https://doi.org/10.1002/STVR.1486

Aschermann, C., Schumilo, S., Blazytko, T., Gawlik, R., & Holz, T. (2019). REDQUEEN: Fuzzing
with input-to-state correspondence. Proceedings 2019 Network and Distributed System
Security Symposium., 19, 1-15. https://doi.org/10.14722/ndss.2019.23371

Blum, W., Rajpal, M., & Singh, R. (2017). Not all bytes are equal: Neural byte sieve for fuzzing
[Accessed 6 December 2025]. https://www.microsoft.com/en-us/research/publicati
on/not-all-bytes-are-equal-neural-byte-sieve-for-fuzzing/

Bohme, M., & Manes, V. J. (2020). Boosting fuzzer efficiency: An information theoretic per-
spective. Proceedings of the 28" ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, 678-689. https:
//doi.org/10.1145/3368089.3409748

Bohme, M., Pham, V., & Roychoudhury, A. (2019). Coverage-based Greybox fuzzing as Markov
chain. IEEE Transactions on Software Engineering, 45(5), 489-506. https://doi.org/10.1
109/TSE.2017.2785841

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.1002/STVR.1486
https://doi.org/10.14722/ndss.2019.23371
https://www.microsoft.com/en-us/research/publication/not-all-bytes-are-equal-neural-byte-sieve-for-fuzzing/
https://www.microsoft.com/en-us/research/publication/not-all-bytes-are-equal-neural-byte-sieve-for-fuzzing/
https://doi.org/10.1145/3368089.3409748
https://doi.org/10.1145/3368089.3409748
https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature ... 99

Bohme, M., Pham, V., Nguyen, M., & Roychoudhury, A. (2017). Directed Greybox fuzzing. CCS
’17: 2017 ACM SIGSAC Conference on Computer and Communications Security, 2329-2344.
https://doi.org/10.1145/3133956.3134020

Bottinger, K., Godefroid, P., & Singh, R. (2018). Deep reinforcement fuzzing. 2018 IEEE Security
and Privacy Workshops (SPW), 116-122. https://doi.org/10.1109/SPW.2018.00026

Boutell, T. (1997). PNG (Portable Network Graphics) specification Version 1.0. https://doi.org
/10.17487/RFC2083

Bundt, J., Fasano, A., Dolan-Gavitt, B., Robertson, W., & Leek, T. (2021). Evaluating synthetic
bugs. ASIA CCS 2021 - Proceedings of the 2021 ACM Asia Conference on Computer and
Communications Security, 15, 716-730. https://doi.org/10.1145/3433210.3453096

Cadar, C., & Sen, K. (2013). Symbolic execution for software testing: Three decades later.
Communications of the ACM, 56(2), 82-90. https://doi.org/10.1145/2408776.24087
95

Chen, H., Xue, Y., Li, Y., Chen, B., Xie, X., Wu, X., & Liu, Y. (2018). Hawkeye: Towards a
desired directed Grey-Box fuzzer. Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2095-2108. https://doi.org/10.1145/324373
4.3243849

Chen, P., & Chen, H. (2018). Angora: Efficient fuzzing by principled search. 2018 IEEE Sym-
posium on Security and Privacy, SP2018, 711-725. https://doi.org/10.1109/SP.2018
.00046

Chen, Y., Li, P, Xu, J., Guo, S., Zhou, R., Zhang, Y., Wei, T., & Lu, L. (2020). SAVIOR: Towards
bug-driven hybrid testing. 2020 IEEE Symposium on Security and Privacy, 1580-1588.
https://doi.org/10.1109/SP40000.2020.00002

De Moura, L., & Bjgrner, N. (2008). Z3: An efficient SMT solver. In C. Ramakrishnan & J.
Rehof (Eds.), Tools and algorithms for the construction and analysis of systems. TACAS
2008. Lecture notes in computer science (pp. 337-340, Vol. 4963 LNCS). Springer-Verlag
Berlin Heidelberg. https://doi.org/10.1007/978-3-540-78800-3_24

Ding, Z. Y., & Goues, C. L. (2021). An empirical study of OSS-Fuzz bugs. 2021 IEEE/ACM 18™
International Conference on Mining Software Repositories, MSR 2021, 131-142. https://d
0i.org/10.1109/MSR52588.2021.00026

Dolan-Gavitt, B., Hulin, P., Kirda, E., Leek, T., Mambretti, A., Robertson, W., Ulrich, F., &
Whelan, R. (2016). LAVA: Large-scale automated vulnerability addition. 2016 IEEE Sym-
posium on Security and Privacy, SP 2016, 110-121. https://doi.org/10.1109/SP.2016
.15

Drozd, W., & Wagner, M. D. (2018). FuzzerGym: A competitive framework for fuzzing and
learning. ArXiv. https://doi.org/10.48550/arXiv.1807.07490

Eberlein, M., Noller, Y., Vogel, T., & Grunske, L. (2020). Evolutionary grammar-based fuzz-
ing. In A. Aleti & A. Panichella (Eds.), Search-based software engineering (pp. 105-120).
Springer International Publishing. https://doi.org/10.1007/978-3-030-59762-7_8

Ebrahim, A. A., Hazhirpasand, M., Nierstrasz, O., & Ghafari, M. (2022). FuzzingDriver: The
missing dictionary to increase code coverage in fuzzers. 2022 IEEE International Confer-

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1109/SPW.2018.00026
https://doi.org/10.17487/RFC2083
https://doi.org/10.17487/RFC2083
https://doi.org/10.1145/3433210.3453096
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/3243734.3243849
https://doi.org/10.1145/3243734.3243849
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP40000.2020.00002
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/MSR52588.2021.00026
https://doi.org/10.1109/MSR52588.2021.00026
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.48550/arXiv.1807.07490
https://doi.org/10.1007/978-3-030-59762-7_8
https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature... 100

ence on Software Analysis, Evolution and Reengineering (SANER), 268-272. https://doi.o
rg/10.1109/SANER53432.2022.00042

Even-Mendoza, K., Sharma, A., Donaldson, A. F., & Cadar, C. (2023). GrayC: Greybox fuzzing
of compilers and analysers for C. ISSTA 2023 : Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis, 1219-1231. https://doi.org
/10.1145/3597926.3598130

Fioraldi, A., D’Elia, D. C., & Coppa, E. (2020). WEIZZ: Automatic grey-box fuzzing for struc-
tured binary formats. ISSTA 2020 - Proceedings of the 29" ACM SIGSOFT International
Symposium on Software Testing and Analysis, 1-13. https://doi.org/10.1145/3395363
.3397372

Fioraldi, A., Maier, D., Eil3feldt, H., & Heuse, M. (2020). AFL++: Combining incremental steps
of fuzzing research. Proceedings of the 14" USENIX Workshop on Offensive Technologies.
https://dl.acm.org/doi/proceedings/10.5555/3488877

Fioraldi, A., Maier, D. C., Zhang, D., & Balzarotti, D. (2022). LibAFL: A framework to build
modular and reusable fuzzers. Proceedings of the 2022 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’22), 1051-1065. https://doi.org/10.1145/3
548606.3560602

Fioraldi, A., Mantovani, A., Maier, D., & Balzarotti, D. (2023). Dissecting American Fuzzy Lop:
A FuzzBench evaluation. ACM Transactions on Software Engineering and Methodology,
32(2), 52. https://doi.org/10.1145/3580596

Gan, S., Zhang, C., Qin, X., Tu, X., Li, K., Pei, Z., & Chen, Z. (2018). CollAFL: Path sensitive
fuzzing. 2018 IEEE Symposium on Security and Privacy (SP), SP2018, 679-696. https://d
0i.org/10.1109/SP.2018.00040

Ghaffarian, S. M., & Shahriari, H. R. (2017). Software vulnerability analysis and discovery
using machine-learning and data-mining techniques: A survey. ACM Computing Surveys,
50(4), 1-36. https://doi.org/10.1145/3092566

Godefroid, P. (2020). Fuzzing: Hack, art, and science. Communications of the ACM, 63(2), 70—
76. https://doi.org/10.1145/3363824

Godefroid, P., Kiezun, A., & Levin, M. Y. (2008). Grammar-based whitebox fuzzing. ACM SIG-
PLAN Notices, 43(6), 206-215. https://doi.org/10.1145/1379022.1375607

Google. (2025). Google fuzzing dictionaries [Accessed 18 November 2025]. https://github.co
m/google/fuzzing/tree/master/dictionaries

Halfond, W. G. J., Choudhary, S. R., & Orso, A. (2011). Improving penetration testing through
static and dynamic analysis. Software Testing, Verification and Reliability, 21(3), 195-214.
https://doi.org/10.1002/stvr.450

IEEE. (1990). IEEE standard glossary of software engineering terminology. https://doi.org/10.1
109/IEEESTD.1990.101064

Karamcheti, S., Mann, G., & Rosenberg, D. (2018). Adaptive grey-box fuzz-testing with Thomp-
son sampling. Proceedings of the ACM Conference on Computer and Communications Se-
curity, 37-47. https://doi.org/10.1145/3270101.3270108

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.1109/SANER53432.2022.00042
https://doi.org/10.1109/SANER53432.2022.00042
https://doi.org/10.1145/3597926.3598130
https://doi.org/10.1145/3597926.3598130
https://doi.org/10.1145/3395363.3397372
https://doi.org/10.1145/3395363.3397372
https://dl.acm.org/doi/proceedings/10.5555/3488877
https://doi.org/10.1145/3548606.3560602
https://doi.org/10.1145/3548606.3560602
https://doi.org/10.1145/3580596
https://doi.org/10.1109/SP.2018.00040
https://doi.org/10.1109/SP.2018.00040
https://doi.org/10.1145/3092566
https://doi.org/10.1145/3363824
https://doi.org/10.1145/1379022.1375607
https://github.com/google/fuzzing/tree/master/dictionaries
https://github.com/google/fuzzing/tree/master/dictionaries
https://doi.org/10.1002/stvr.450
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1145/3270101.3270108
https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature... 101

Kim, J., Yu, J., Kim, H., Rustamov, F., & Yun, J. (2021). FIRM-COV: High-coverage Grey-
box fuzzing for IoT firmware via optimized process emulation. IEEE Access, 9, 101627—-
101642. https://doi.org/10.1109/ACCESS.2021.3097807

King, J. C. (1976). Symbolic execution and program testing. Communications of the ACM, 19(7),
385-394. https://doi.org/10.1145/360248.360252

Kitchenham, B. (2007). Guidelines for performing systematic literature reviews in software engin-
eering (tech. rep.). Department of Computer Science, University of Durham, Durham,
UK. https://www.researchgate.net/publication/302924724

Kukucka, J., Pina, L., Ammann, P., & Bell, J. (2022). CONFETTIL: Amplifying concolic guidance
for fuzzers. Proceedings of the 44" International Conference on Software Engineering (ICSE
'22), 438-450. https://doi.org/10.1145/3510003.3510628

Li, R., Liang, H. L., Liu, L., Ma, X., Qu, R., Yan, J., & Zhang, J. (2020). GTFuzz: Guard token
directed Grey-Box fuzzing. Proceedings of 25" IEEE Pacific Rim International Symposium
on Dependable Computing (PRDC), 160-170. https://doi.org/10.1109/PRDC50213.20
20.00027

Liang, H., Pei, X., Jia, X., Shen, W., & Zhang, J. (2018). Fuzzing: State of the art. IEEE Trans-
actions on Reliability, 67(3), 1199-1218. https://doi.org/10.1109/TR.2018.2834476

Liu, B., Shi, L., Cai, Z., & Li, M. (2012). Software vulnerability discovery techniques: A sur-
vey. Proceedings of the 2012 Fourth International Conference on Multimedia Information
Networking and Security (MINES ’12), 152-156. https://doi.org/10.1109/MINES.201
2.202

Lyu, C., Ji, S., Zhang, C., Li, Y., Lee, W. H., Song, Y., & Beyah, R. (2019). MOPT: Optim-
ized mutation scheduling for fuzzers. Proceedings of the 28" USENIX Security Symposium,
1949-1966. https://dl.acm.org/doi/10.5555/3361338.3361473

MacFarland, T. W., & Yates, J. M. (2016). Introduction to nonparametric statistics for the biological
sciences using R. Springer International Publishing. https://doi.org/10.1007/978-3-3
19-30634-6

Mathis, B., Gopinath, R., & Zeller, A. (2020). Learning input tokens for effective fuzzing. Pro-
ceedings of the 29" ACM SIGSOFT International Symposium on Software Testing and Ana-
lysis (ISSTA 2020), 27-37. https://doi.org/10.1145/3395363.3397348

Metzman, J., Szekeres, L., Simon, L., Sprabery, R., & Arya, A. (2021). FuzzBench: An open
fuzzer benchmarking platform and service. Proceedings of the 29" ACM Joint Meeting
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2021), 21, 1393-1403. https://doi.org/10.1145/3468264.34
73932

Miller, B. P., Fredriksen, L., & So, B. (1990). An empirical study of the reliability of UNIX
utilities. Communications of the ACM, 33(12), 32-44. https://doi.org/10.1145/96267
.96279

Nagy, S., & Hicks, M. (2019). Full-speed fuzzing: Reducing fuzzing overhead through coverage-
guided tracing. Proceedings of the 2019 IEEE Symposium on Security and Privacy, 2019-
May, 787-802. https://doi.org/10.1109/SP.2019.00069

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.1109/ACCESS.2021.3097807
https://doi.org/10.1145/360248.360252
https://www.researchgate.net/publication/302924724
https://doi.org/10.1145/3510003.3510628
https://doi.org/10.1109/PRDC50213.2020.00027
https://doi.org/10.1109/PRDC50213.2020.00027
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/MINES.2012.202
https://doi.org/10.1109/MINES.2012.202
https://dl.acm.org/doi/10.5555/3361338.3361473
https://doi.org/10.1007/978-3-319-30634-6
https://doi.org/10.1007/978-3-319-30634-6
https://doi.org/10.1145/3395363.3397348
https://doi.org/10.1145/3468264.3473932
https://doi.org/10.1145/3468264.3473932
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1109/SP.2019.00069
https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature... 102

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, 1., Hoffmann, T. C., Mulrow, C. D.,
Shamseer, L., Tetzlaff, J. M., AKl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw,
J. M., Hrébjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S.,
... Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting
systematic reviews. British Medical Journal, 372. https://doi.org/10.1136/bmj.n71

Pham, V. T., Bohme, M., Santosa, A. E., Caciulescu, A. R., & Roychoudhury, A. (2021). Smart
Greybox fuzzing. IEEE Transactions on Software Engineering, 47(9), 1980-1997. https:
//doi.org/10.1109/TSE.2019.2941681

Raharjana, I. K., Siahaan, D., & Fatichah, C. (2021). User stories and natural language pro-
cessing: A systematic literature review. IEEE Access, 9, 53811-53826. https://doi.org
/10.1109/ACCESS.2021.3070606

Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., & Bos, H. (2017). Vuzzer: Application-
aware evolutionary fuzzing. Network and Distributed System Security Symposium (NDSS),
1-14. https://doi.org/10.14722/ndss.2017.23404

Serebryany, K. (2015). libFuzzer [Accessed 18 November 2025]. https://llvm.org/docs/LibFu
zzer.html

Shastry, B. (2018). Statistical evaluation of a fuzzing dictionary (tech. rep.). https://bshastry.gi
thub.io/2018/10/01/Evaluating-Dictionary-For-Fuzzing.html

Shastry, B., Leutner, M., Fiebig, T., Thimmaraju, K., Yamaguchi, F., Rieck, K., Schmid, S.,
Seifert, J.-P., & Feldmann, A. (2017). Static program analysis as a fuzzing aid. Research
in Attacks, Intrusions, and Defenses, 26—47. https://doi.org/10.1007/978-3-319-6633
2-6_2

Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J., Shoshitaishvili, Y., Krue-
gel, C., & Vigna, G. (2016). Driller: Augmenting fuzzing through selective symbolic
execution. Network and Distributed System Security Symposium (NDSS). https://doi.org
/10.14722/ndss.2016.23368

Swiecki, R., & Grobert, F. (2025). honggfuzz: Security oriented software fuzzer [Accessed 18
November 2025]. https://github.com/google/honggfuzz

Wang, J., Chen, B., Wei, L., & Liu, Y. (2019). Superion: Grammar-aware Greybox fuzzing.
Proceedings — International Conference on Software Engineering, 2019-May, 724-735. htt
ps://doi.org/10.1109/ICSE.2019.00081

Wang, P., Zhou, X., Yue, T., Lin, P., Liu, Y., & Lu, K. (2024). The progress, challenges, and
perspectives of directed Greybox fuzzing. Software Testing, Verification and Reliability,
34(2), e1869. https://doi.org/10.1002/stvr.1869

Wang, T., Wei, T., Gu, G., & Zou, W. (2010). TaintScope: A checksum-aware directed fuzzing
tool for automatic software vulnerability detection. 2010 IEEE Symposium on Security
and Privacy, 497-512. https://doi.org/10.1109/SP.2010.37

Wu, M., Xiang, J., Chen, K., Di, P., Tan, S. H., Cui, H., & Zhang, Y. (2025). Tumbling down the
rabbit hole: How do assisting exploration strategies facilitate Grey-Box fuzzing? 2025
IEEE/ACM 47" International Conference on Software Engineering (ICSE), 2036-2048. htt
ps://doi.org/10.1109/ICSE55347.2025.00044

https://doi.org/10.18489/sacj.v37i2.21430

https://doi.org/10.1136/bmj.n71
https://doi.org/10.1109/TSE.2019.2941681
https://doi.org/10.1109/TSE.2019.2941681
https://doi.org/10.1109/ACCESS.2021.3070606
https://doi.org/10.1109/ACCESS.2021.3070606
https://doi.org/10.14722/ndss.2017.23404
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://bshastry.github.io/2018/10/01/Evaluating-Dictionary-For-Fuzzing.html
https://bshastry.github.io/2018/10/01/Evaluating-Dictionary-For-Fuzzing.html
https://doi.org/10.1007/978-3-319-66332-6_2
https://doi.org/10.1007/978-3-319-66332-6_2
https://doi.org/10.14722/ndss.2016.23368
https://doi.org/10.14722/ndss.2016.23368
https://github.com/google/honggfuzz
https://doi.org/10.1109/ICSE.2019.00081
https://doi.org/10.1109/ICSE.2019.00081
https://doi.org/10.1002/stvr.1869
https://doi.org/10.1109/SP.2010.37
https://doi.org/10.1109/ICSE55347.2025.00044
https://doi.org/10.1109/ICSE55347.2025.00044
https://doi.org/10.18489/sacj.v37i2.21430

Dube, E.L., et al. : Improving greybox fuzzing with dictionary-based mutations: A systematic literature... 103

Xie, Y., Naik, M., Hackett, B., & Aiken, A. (2005). Soundness and its role in bug detection
systems. BUGS’2005 (PLDI’2005 Workshop on the Evaluation of Software Defect Detection
Tools). https://www.cs.umd.edu/~pugh/BugWorkshopQ05/papers/12-xie.pdf

You, W, Liu, X., Ma, S., Perry, D., Zhang, X., & Liang, B. (2019). SLF: Fuzzing without valid
seed inputs. Proceedings of the 41°" International Conference on Software Engineering (ICSE
’19), 712-723. https://doi.org/10.1109/ICSE.2019.00080

Yun, L., Lee, S., Xu, M., Jang, Y., & Kim, T. (2018). QSYM : A practical concolic execution
engine tailored for hybrid fuzzing. Proceedings of the 27" USENIX Security Symposium,
745-761. https://dl.acm.org/doi/10.5555/3277203.3277260

Zalewski, M. (2013). AFL: American Fuzzy Lop — a security-oriented fuzzer [Accessed 18 Novem-
ber 2025]. https://github.com/google/AFL

Zalewski, M. (2015). afl-fuzz: making up grammar with a dictionary in hand [Accessed 18 Novem-
ber 2025]. https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-wi
th.html

Zeller, A., Gopinath, R., Bohme, M., Fraser, G., & Holler, C. (2024). The fuzzing book. CISPA
Helmholtz Center for Information Security. https://www.fuzzingbook.org/

Zhu, S., Wang, J., Sun, J., Yang, J., Lin, X., Wang, T., Zhang, L., & Cheng, P. (2024). Better
pay attention whilst fuzzing. IEEE Transactions on Software Engineering, 50(2), 190-208.
https://doi.org/10.1109/TSE.2023.3338129

Zhuy, X., & Bohme, M. (2021). Regression Greybox fuzzing. Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, 2169-2182. https://doi.org/10
.1145/3460120.3484596

https://doi.org/10.18489/sacj.v37i2.21430

https://www.cs.umd.edu/~pugh/BugWorkshop05/papers/12-xie.pdf
https://doi.org/10.1109/ICSE.2019.00080
https://dl.acm.org/doi/10.5555/3277203.3277260
https://github.com/google/AFL
https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html
https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html
https://www.fuzzingbook.org/
https://doi.org/10.1109/TSE.2023.3338129
https://doi.org/10.1145/3460120.3484596
https://doi.org/10.1145/3460120.3484596
https://doi.org/10.18489/sacj.v37i2.21430

	Introduction
	Background of Fuzz Testing Process
	Working Example: PNG Parser
	General Weaknesses of Blackbox, Greybox, and Whitebox Fuzzing
	Mutational vs Generational Fuzzing
	Dictionary-Based Mutation
	Objective and Research Questions

	Methodology
	Search Query
	Information Sources
	Inclusion and Exclusion Criteria
	Screening of Publications
	Assessment of Literature search
	Literature Data Extraction and Synthesis

	RESULTS AND DISCUSSION
	Impact of dictionary-based mutation on fuzz testing effectiveness and efficiency (RQ1)
	Strategies for extracting fuzzing dictionary tokens from the program under test code base (RQ2)
	Limitations of dictionary-based mutational fuzzing (RQ3)
	Optimisation of dictionary-based mutation operator selection and scheduling (RQ4)
	Alternative augmentation strategies to address the limitations of dictionary-based mutational fuzzing (RQ5)

	GAPS IDENTIFIED AND FUTURE WORKS
	CONCLUSION

